Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,028 result(s) for "Urinary Bladder Neoplasms - urine"
Sort by:
Profiling the Urinary Microbiota in Male Patients With Bladder Cancer in China
Mounting evidence indicates that microbiome plays an important role in the development and progression of cancer. The dogma that urine in healthy individuals must be sterile has been overturned. Dysbiosis of the urinary microbiome has been revealed responsible for various urological disorders, including prostate cancer. The link between chronic inflammation, microbiome and solid tumors has been established for various neoplastic diseases. However, a detailed and comprehensive analysis of urinary microenvironment of bladder cancer has not been yet reported. We performed this study to characterize the potential urinary microbial community possibly associated with bladder cancer. Mid-stream urine was collected from 31 male patients with bladder cancer and 18 non-neoplastic controls. DNA was extracted from urine pellet samples and processed for high throughput 16S rRNA amplicon sequencing of the V4 region using Illumina MiSeq. Sequencing reads were filtered using QIIME and clustered using UPARSE. We observed increased bacterial richness (Observed Species, Chao 1 and Ace indexes; cancer vs. control; 120.0 vs. 56.0; 134.5 vs. 68.3; and 139.6 vs. 72.9, respectively), enrichment of some bacterial genera (e.g., ) and decrease of some bacterial genera (e.g., , and ) in cancer group when compared to non-cancer group. Significant difference in beta diversity was found between cancer and non-cancer group, among different risk level, but not among different tumor grade. Enrichment of , and was observed in cancer patients with high risk of recurrence and progression, which means these genera maybe potential biomarkers for risk stratification. The PICRUSt showed that various functional pathways were enriched in cancer group, including infection, glycerolipid metabolism and retinol metabolism. To our knowledge, we performed the most comprehensive study to date to characterize the urinary microbiome associated with bladder cancer. A better understanding of the role of microbiome in the development and progression of bladder cancer could pave a new way for exploring new therapeutic options and biomarkers.
ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence
Non-muscle-invasive bladder cancer (NMIBC) is a highly recurrent tumor despite intravesical immunotherapy instillation with the bacillus Calmette-Guérin (BCG) vaccine. In a prospective longitudinal study, we took advantage of BCG instillations, which increase local immune infiltration, to characterize immune cell populations in the urine of patients with NMIBC as a surrogate for the bladder tumor microenvironment. We observed an infiltration of neutrophils, T cells, monocytic myeloid-derived suppressor cells (M-MDSCs), and group 2 innate lymphoid cells (ILC2). Notably, patients with a T cell-to-MDSC ratio of less than 1 showed dramatically lower recurrence-free survival than did patients with a ratio of greater than 1. Analysis of early and later time points indicated that this patient dichotomy existed prior to BCG treatment. ILC2 frequency was associated with detectable IL-13 in the urine and correlated with the level of recruited M-MDSCs, which highly expressed IL-13 receptor α1. In vitro, ILC2 were increased and potently expressed IL-13 in the presence of BCG or tumor cells. IL-13 induced the preferential recruitment and suppressive function of monocytes. Thus, the T cell-to-MDSC balance, associated with a skewing toward type 2 immunity, may predict bladder tumor recurrence and influence the mortality of patients with muscle-invasive cancer. Moreover, these results underline the ILC2/IL-13 axis as a targetable pathway to curtail the M-MDSC compartment and improve bladder cancer treatment.
Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine
Background: Urothelial bladder cancer (UBC) is characterised by a high risk of recurrence. Patient monitoring is currently based on iterative cystoscopy and on urine cytology with low sensitivity in non-muscle-invasive bladder cancer (NMIBC). Telomerase reverse transcriptase (TERT) is frequently reactivated in UBC by promoter mutations. Methods: We studied whether detection of TERT mutation in urine could be a predictor of UBC recurrence and compared this to cytology/cystoscopy for patient follow-up. A total of 348 patients treated by transurethral bladder resection for UBC were included together with 167 control patients. Results: Overall sensitivity was 80.5% and specificity 89.8%, and was not greatly impacted by inflammation or infection. TERT remaining positive after initial surgery was associated with residual carcinoma in situ . TERT in urine was a reliable and dynamic predictor of recurrence in NMIBC ( P <0.0001). In univariate analysis, TERT positive-status after initial surgery increased risk of recurrence by 5.34-fold ( P =0.0004). TERT positive-status was still associated with recurrence in the subset of patients with negative cystoscopy ( P =0.034). Conclusions: TERT mutations in urine might be helpful for early detection of recurrence in UBC, especially in NMIBC.
Establishment of a novel experimental model for muscle‐invasive bladder cancer using a dog bladder cancer organoid culture
In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle‐invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient‐derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA‐sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two‐dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle‐invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers. In the present study, we for the first time generated dog bladder cancer (BC) organoids and identified several genes specifically upregulated in the organoids. Our data suggest that dog BC organoids might become a new tool to provide new insights for both dog BC therapy and diagnostic markers.
Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA
Urothelial bladder cancers (UBCs) have heterogeneous clinical characteristics that are mirrored in their diverse genomic profiles. Genomic profiling of UBCs has the potential to benefit routine clinical practice by providing prognostic utility above and beyond conventional clinicopathological factors, and allowing for prediction and surveillance of treatment responses. Urinary DNAs representative of the tumour genome provide a promising resource as a liquid biopsy for non-invasive genomic profiling of UBCs. We compared the genomic profiles of urinary cellular DNA and cell-free DNA (cfDNA) from the urine with matched diagnostic formalin-fixed paraffin-embedded tumour DNAs for 23 well-characterised UBC patients. Our data show urinary DNAs to be highly representative of patient tumours, allowing for detection of recurrent clinically actionable genomic aberrations. Furthermore, a greater aberrant load (indicative of tumour genome) was observed in cfDNA over cellular DNA (P<0.001), resulting in a higher analytical sensitivity for detection of clinically actionable genomic aberrations (P<0.04) when using cfDNA. Thus, cfDNA extracted from the urine of UBC patients has a higher tumour genome burden and allows greater detection of key genomic biomarkers (90%) than cellular DNA from urine (61%) and provides a promising resource for robust whole-genome tumour profiling of UBC with potential to influence clinical decisions without invasive patient interventions.
Metabolic Evaluation of Urine from Patients Diagnosed with High Grade (HG) Bladder Cancer by SPME-LC-MS Method
Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study’s results may support a better understanding of bladder cancer development and progression mechanisms.
Diagnostic and prognostic role of urinary collagens in primary human bladder cancer
Collagen type 4 alpha 1 (COL4A1) and collagen type 13 alpha 1 (COL13A1) produced by urothelial cancer cells support the vital oncogenic property of tumor invasion. We investigated the diagnostic and prognostic capability of COL4A1 and COL13A1 in voided urine and compared the observed values with those of fragments of cytokeratin‐19 (CYFRA21‐1), nuclear matrix protein 22 (NMP‐22), and voided urine cytology in bladder cancer (BCa). We collected voided urine samples from 154 patients newly diagnosed with BCa, before surgery and from 61 control subjects. Protein levels of COL4A1, COL13A1, CYFRA21‐1, and NMP‐22 in urine supernatants were measured using enzyme‐linked immunosorbent assays. Diagnostic performance and optimal cut‐off values were determined by receiver operating characteristic analysis. Urine levels of COL4A1, COL13A1, the combined values of COL4A1 and COL13A1 (COL4A1 + COL13A1), and CYFRA21‐1 were significantly elevated in urine from patients with BCa compared to the controls. Among these biomarkers, the optimal cut‐off value of COL4A1 + COL13A1 at 1.33 ng/mL resulted in 57.4%, 83.7%, 56.1%, 80.7%, and 91.7% sensitivity for low‐grade tumors, high‐grade tumors, Ta, T1, and muscle invasive disease, respectively. We evaluated the prognostic value of preoperative urine levels in 130 non‐muscle invasive BCa samples after the initial transurethral surgery. A high urinary COL4A1 + COL13A1 was found to be an independent risk factor for intravesical recurrence. Although these data need to be externally validated, urinary COL4A1 and COL13A1 could be a potential diagnostic and prognostic biomarker for BCa. This easy‐to‐use urinary signature identifies a subgroup of patients with a high probability of recurrence and progression in non‐muscle invasive and muscle invasive BCa. This study demonstrated the diagnostic and prognostic performance of urinary collagens in comparison with those of CYFRA21‐1, NMP‐22, and voided urine cytology in bladder cancer. This easy‐to‐use urinary signature identifies a subgroup of patients with high probability of recurrence and progression in non‐muscle invasive disease..
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Bladder cancer (BC) is the most common urologic malignancy, facing enormous diagnostic challenges. Urinary extracellular vesicles (EVs) are promising source for developing diagnostic markers for bladder cancer because of the direct contact between urine and bladder. This study pioneers urinary EV N-glycomics for bladder cancer diagnosis. We have generated a comprehensive N-glycome landscape of urinary EVs through high-throughput N-glycome analysis, identifying a total of 252 N-glycans from 333 individuals. In bladder cancer patients, urinary EVs exhibit decreased fucosylation and increased sialylation level. An Eight N-glycan diagnostic model demonstrates strong performance in both validation cohorts, achieving ROC AUC values of 0.88 and 0.86, respectively. Furthermore, this model successfully differentiates both non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) from healthy individuals, underscoring the model’s superiority. Moreover, urinary EVs N-glycoproteomic analysis reveals that the glycoproteins carrying cancer-associated N-glycan signatures are closely associated with immune activities. The N-glycome comparative analysis of EVs and their source cells indicate that the glycosylation profiles of EVs do not completely match the glycosylation backgrounds of their source cells. In summary, our study establishes urinary EV N-glycomics as a non-invasive BC screening tool and provide a framework for EV glycan biomarker discovery across cancers. Bladder cancer diagnosis lacks non-invasive biomarkers. Here, the authors discover urinary extracellular vesicle (EV) glycan signatures that distinguish bladder cancer patients from healthy controls, paving the way for EV-based liquid biopsy.
Diagnostic and Prognostic Potential of SH3YL1 and NOX4 in Muscle-Invasive Bladder Cancer
Bladder cancer, especially muscle-invasive bladder cancer (MIBC), poses significant treatment challenges due to its aggressive nature and poor prognosis, often necessitating cisplatin-based chemotherapy. While cisplatin effectively reduces tumor burden, its nephrotoxic effects, specifically cisplatin-induced acute kidney injury (AKI), limit its clinical use. This study investigates SH3YL1 as a potential biomarker for bladder cancer progression and AKI. Plasma and urine SH3YL1 levels were measured in bladder cancer patients undergoing cisplatin treatment, showing elevated baseline levels compared to controls, suggesting a link with bladder cancer pathology rather than cisplatin-induced AKI. Functional network and Gene Ontology (GO) enrichment analyses identified SH3YL1’s interactions with NADPH oxidase pathways, particularly NOX family genes, and highlighted its roles in cell adhesion, migration, and cytoskeletal organization—processes critical for tumor invasiveness. Notably, SH3YL1 and NOX4 expression were significantly higher in MIBC than in non-muscle-invasive bladder cancer (NMIBC), with a strong correlation between SH3YL1 and NOX4 (r = 0.62) in MIBC, suggesting a subtype-specific interaction. Kaplan–Meier survival analysis using The Cancer Genome Atlas bladder cancer (TCGA-BLCA) data further demonstrated that low SH3YL1 expression is significantly associated with poor overall and disease-specific survival in MIBC patients, reinforcing its role as a prognostic biomarker. In conclusion, SH3YL1 is a promising biomarker for identifying the invasive characteristics of MIBC and predicting patient outcomes. These findings underscore the importance of SH3YL1–NOX4 pathways in MIBC and suggest the need for further research into targeted biomarkers for bladder cancer progression and cisplatin-induced AKI to improve patient outcomes in high-risk cases.
An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer
ObjectivesWith the advent of novel genomic and transcriptomic technologies, new urinary biomarkers have been identified and tested for bladder cancer (BCa) surveillance. To summarize the current status of urinary biomarkers for the detection of recurrence and/or progression in the follow-up of non-muscle invasive BCa patients, and to assess the value of urinary biomarkers in predicting response to intravesical Bacillus Calmette–Guerin (BCG) therapy.Methods and materialsA medline/pubmed© literature search was performed. The performance of commercially available and investigational biomarkers has been reviewed. End points were cancer detection (recurrence), cancer progression, and response to BCG therapy.ResultsThe performance requirements for biomarkers are variable according to the clinical scenario. The clinical role of urinary biomarkers in the follow-up of non-muscle invasive BCa patients remains undefined. The FDA-approved tests provide unsatisfactory sensitivity and specificity levels and their use is limited. Fluorescence in situ hybridization (FISH) has been shown to be useful in specific scenarios, mostly as a reflex test and in the setting of equivocal urinary cytology. FISH and immunocytology could conceivably be used to assess BCG response. Recently developed biomarkers have shown promising results; upcoming large trials will test their utility in specific clinical scenarios in a manner similar to a phased drug development strategy.ConclusionsCurrent commercially available urinary biomarker-based tests are not sufficiently validated to be widely used in clinical practice. Several novel biomarkers are currently under investigation. Prospective multicenter analyses will be needed to establish their clinical relevance and value.