MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer
Journal Article

Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer

2025
Request Book From Autostore and Choose the Collection Method
Overview
Bladder cancer (BC) is the most common urologic malignancy, facing enormous diagnostic challenges. Urinary extracellular vesicles (EVs) are promising source for developing diagnostic markers for bladder cancer because of the direct contact between urine and bladder. This study pioneers urinary EV N-glycomics for bladder cancer diagnosis. We have generated a comprehensive N-glycome landscape of urinary EVs through high-throughput N-glycome analysis, identifying a total of 252 N-glycans from 333 individuals. In bladder cancer patients, urinary EVs exhibit decreased fucosylation and increased sialylation level. An Eight N-glycan diagnostic model demonstrates strong performance in both validation cohorts, achieving ROC AUC values of 0.88 and 0.86, respectively. Furthermore, this model successfully differentiates both non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) from healthy individuals, underscoring the model’s superiority. Moreover, urinary EVs N-glycoproteomic analysis reveals that the glycoproteins carrying cancer-associated N-glycan signatures are closely associated with immune activities. The N-glycome comparative analysis of EVs and their source cells indicate that the glycosylation profiles of EVs do not completely match the glycosylation backgrounds of their source cells. In summary, our study establishes urinary EV N-glycomics as a non-invasive BC screening tool and provide a framework for EV glycan biomarker discovery across cancers. Bladder cancer diagnosis lacks non-invasive biomarkers. Here, the authors discover urinary extracellular vesicle (EV) glycan signatures that distinguish bladder cancer patients from healthy controls, paving the way for EV-based liquid biopsy.