Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,241
result(s) for
"Vanadium Compounds"
Sort by:
Vanadium. Its Role for Humans
by
Rehder, Dieter
in
antiparasitic vanadium compounds
,
antiviral potential
,
cardiovascular effects
2013
Vanadium is the 21st most abundant element in the Earth’s crust and the 2nd-to-most abundant transition metal in sea water. The element is ubiquitous also in freshwater and nutrients. The average body load of a human individual amounts to 1 mg. The omnipresence of vanadium hampers checks directed towards its essentiality. However, since vanadate can be considered a close blueprint of phosphate with respect to its built-up, vanadate likely takes over a regulatory function in metabolic processes depending on phosphate. At common concentrations, vanadium is non-toxic. The main source for potentially toxic effects caused by vanadium is exposure to high loads of vanadium oxides in the breathing air of vanadium processing industrial enterprises. Vanadium can enter the body via the lungs or, more commonly, the stomach. Most of the dietary vanadium is excreted. The amount of vanadium resorbed in the gastrointestinal tract is a function of its oxidation state (VV or VIV) and the coordination environment. Vanadium compounds that enter the blood stream are subjected to speciation. The predominant vanadium species in blood are vanadate and vanadyl bound to transferrin. From the blood stream, vanadium becomes distributed to the body tissues and bones. Bones act as storage pool for vanadate. The aqueous chemistry of vanadium(V) at concentration <10 μM is dominated by vanadate. At higher concentrations, oligovanadates come in, decavanadate in particular, which is thermodynamically stable in the pH range 2.3–6.3, and can further be stabilized at higher pH by interaction with proteins.
The similarity between vanadate and phosphate accounts for the interplay between vanadate and phosphate-dependent enzymes: phosphatases can be inhibited, kinases activated. As far as medicinal applications of vanadium compounds are concerned, vanadium’s mode of action appears to be related to the phosphate-vanadate antagonism, to the direct interaction of vanadium compounds or fragments thereof with DNA, and to vanadium’s contribution to a balanced tissue level of reactive oxygen species. So far vanadium compounds have not yet found approval for medicinal applications. The antidiabetic (insulin-enhancing) effect, however, of a singular vanadium complex, bis(ethylmaltolato)oxidovanadium(IV) (BEOV), has revealed encouraging results in phase IIa clinical tests. In addition, in vitro studies with cell cultures and parasites, as well as in vivo studies with animals, have revealed a broad potential spectrum for the application of vanadium coordination compounds in the treatment of cardiac and neuronal disorders, malignant tumors, viral and bacterial infections (such as influenza, HIV, and tuberculosis), and tropical diseases caused by parasites, e.g., Chagas’ disease, leishmaniasis, and amoebiasis.
Book Chapter
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells
by
Inkielewicz-Stępniak, Iwona
,
Wyrzykowski, Dariusz
,
Kowalski, Szymon
in
Animals
,
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
2020
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Journal Article
Systemic Bisperoxovanadium Activates Akt/mTOR, Reduces Autophagy, and Enhances Recovery following Cervical Spinal Cord Injury
2012
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.
Journal Article
Rational design of bi-phase CaV2O6/NaV6O15 cathode materials for long-life aqueous zinc batteries
2023
Vanadium-based compounds with various crystal structures are highly promising cathode materials for aqueous zinc-based batteries. However, their further development is limited due to the low electrical conductivity, slow zinc ion diffusion, and weak structural stability. It is a feasible strategy to resolve above mentioned issues through surface modification. Herein, we design bi-phase coexisting CaV2O6/NaV6O15 nanobelt structures with abundant interfaces, which provide more reactive sites than single-phase ones. The samples as the electrode materials deliver a specific capacity of 312 mAh g−1 at 5 A g−1 after 2000 cycles. They still keep a capacity of 231 mAh g−1 at 10 A g−1 with a cycle life of 6500 times.
Journal Article
Simple-synthesis VO₂ nanoparticles as robust nanozymes for synergistic antibacterial therapy and abscess repair
by
Wang, Yi-Xin
,
Yang, Qining
,
Fu, Weicong
in
Abscess - drug therapy
,
Abscess - microbiology
,
Abscess - therapy
2025
Multidrug resistant (MDR) bacterial infections, particularly those involving methicillin-resistant Staphylococcus aureus (MRSA), pose a grave threat to global population health, necessitating novel therapeutic approaches capable of circumventing existing resistance mechanisms. Biomimetic enzymes, which generate bactericidal reactive oxygen species (ROS) by mimicking natural enzyme activity, represent a highly promising solution. This study reports a straightforward one-step synthesis method for vanadium dioxide (VO₂) nanoparticles, which function as potent biomimetic enzymes exhibiting both oxidase-like and peroxidase-like activities. When combined with near-infrared laser irradiation (808 nm, 1 W/cm²) for photothermal therapy (PTT), these VO₂ nanoparticles not only mediate local hyperthermia with a photothermal conversion rate of up to 36.9%, but also significantly enhance ROS generation through biomimetic catalysis. This achieves potent synergistic effects between photothermal therapy and chemodynamic therapy (CDT). This combined therapy exhibits potent antibacterial activity against suspended methicillin-resistant Staphylococcus aureus (MRSA) and effectively disrupts preformed biofilms. Furthermore, in a subcutaneous abscess mouse model, VO₂-mediated PTT-CDT treatment efficiently eradicated bacteria, alleviated local inflammation, promoted tissue repair and angiogenesis. In summary, this readily synthesised VO₂ nanozyme system offers an efficient and translatable therapeutic strategy for tackling challenging multidrug-resistant bacterial infections.
Graphical Abstract
Journal Article
Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings
2013
Vanadium dioxide (VO
2
) is a Mott phase transition compound that can be applied as a thermochromic smart material for energy saving and comfort and titanium dioxide (TiO
2
) is a well-known photocatalyst for self-cleaning coatings. In this paper, we report a VO
2
@TiO
2
core-shell structure, in which the VO
2
nanorod core exhibits a remarkable modulation ability for solar infrared light and the TiO
2
anatase shell exhibits significant photocatalytic degradation of organic dye. In addition, the TiO
2
overcoating not only increased the luminous transmittance of VO
2
based on an antireflection effect, but also modified the intrinsic colour of VO
2
films from yellow to light blue. The TiO
2
also enhanced the chemical stability of VO
2
against oxidation. This is the first report of such a single nanoparticle structure with both thermochromic and photocatalytic properties that offer significant potential for creating a multifunctional smart coating.
Journal Article
Enhancement of oncolytic virotherapy by vanadium(V) dipicolinates
by
Crans, Debbie C
,
Selman, Mohammed
,
Owens, Elizabeth
in
Animal models
,
Antidiabetics
,
Cell culture
2019
Oncolytic viruses rewire the immune system and can lead to long-lasting antitumor defenses against primary and metastatic tumors. However, results from clinical studies have shown heterogeneity in responses suggesting that multiplexed approaches may be necessary to consistently generate positive outcomes in patients. To this end, we explored the combination of oncolytic rhabdovirus VSV∆51 with vanadium(V) dipicolinate derivatives, which have already been explored for their antidiabetic properties in animal models. The combination of vanadium-based dipicolinate compounds with VSV∆51 significantly increased viral replication and cytotoxicity in the human renal cell carcinoma cell line 786-0. The effects of three vanadium(V)-dipicolinate coordination complexes ([VO2dipic]−, [VO2dipic-OH]− and [VO2dipic-Cl]− with –OH or –Cl in the para position) were compared to that of the simple salts using spectroscopy and speciation profiles. Like the vanadate salts and the vanadyl cation, all dioxovanadium(V) dipicolinate complexes tested were found to increase viral infection and cytotoxicity when used in combination with VSV∆51. Viral sensitization is dependent on the vanadium since free dipicolinate ligands exerted no effect on viral infection and viability. The ability of these complexes to interact with interfaces and the stability of the complexes were evaluated under physiological conditions. Results indicate that these complexes undergo hydrolysis in cell culture media thereby generating vanadate. The vanadium dipicolinate derivatives in the context of immunovirotherapy shares similarities with previous studies exploring the antidiabetic properties of the compounds. The synergy between vanadium compounds and the oncolytic virus suggests that these compounds may be valuable in the development of novel and effective pharmaco-viral therapies.
Journal Article
Vanadium Compound Treatment Modulates MC3t3-E1 Osteoblast Function
2025
Osteoblastogenesis plays a critical role in bone repair. Insulin and insulin-mimetic compounds, such as vanadium (IV) oxide acetylacetonate (VAC), have been reported to enhance bone healing in various models. This study aimed to evaluate the effects of vanadium compounds, VAC and vanadium (IV) oxide sulfate (VOSO4), on osteoblast proliferation and function. MC3T3-E1 pre-osteoblast cells were treated with insulin, ascorbic acid, and varying concentrations of VAC or VOSO4, and samples were collected at multiple time points over 21 days. We assessed cell proliferation, functional markers, and gene and protein expression. Our findings demonstrate that both VAC and VOSO4 stimulate MC3T3-E1 proliferation, increase calcium and proteoglycan deposition, and enhance phosphorylation of Protein Kinase B (Akt) over time. Gene expression analysis revealed that VAC treatment upregulated RUNX2, BGLAP, and TWIST2 at Day 7 compared to controls, with sustained expression patterns observed at Day 10. These results align with existing literature, supporting that VAC and VOSO4 promote osteoblastogenesis and may serve as effective adjuvants to accelerate bone regeneration during fracture healing.
Journal Article
Synthesis, Crystal Structure, and Computational Methods of Vanadium and Copper Compounds as Potential Drugs for Cancer Treatment
by
Méndez-Rojas, Miguel Ángel
,
González-Vergara, Enrique
,
Sánchez-Gaytán, Brenda L.
in
AIM analysis
,
Antineoplastic Agents - chemical synthesis
,
Antineoplastic Agents - chemistry
2020
Transition metal-based compounds have shown promising uses as therapeutic agents. Among their unique characteristics, these compounds are suitable for interaction with specific biological targets, making them important potential drugs to treat various diseases. Copper compounds, of which Casiopeinas® are an excellent example, have shown promising results as alternatives to current cancer therapies, in part because of their intercalative properties with DNA. Vanadium compounds have been extensively studied for their pharmacological properties and application, mostly in diabetes, although recently, there is a growing interest in testing their activity as anti-cancer agents. In the present work, two compounds, [Cu(Metf)(bipy)Cl]Cl·2H2O and [Cu(Impy)(Gly)(H2O)]VO3, were obtained and characterized by visible and FTIR spectroscopies, single-crystal X-ray diffraction, and theoretical methods. The structural and electronic properties of the compounds were calculated through the density functional theory (DFT) using the Austin–Frisch–Petersson functional with dispersion APFD, and the 6-311 + G(2d,p) basis set. Non-covalent interactions were analyzed using Hirshfeld surface analysis (HSA) and atom in molecules analysis (AIM). Additionally, docking analysis to test DNA/RNA interactions with the Casiopeina-like complexes were carried out. The compounds provide metals that can interact with critical biological targets. In addition, they show interesting non-covalent interactions that are responsible for their supramolecular arrangements.
Journal Article
Synthesis, Characterization, Antioxidant Status, and Toxicity Study of Vanadium–Rutin Complex in Balb/c Mice
by
Ghosh, Balaram
,
Majumdar, Sumana
,
Singh, Amit Kumar
in
Acute toxicity
,
alanine transaminase
,
alkaline phosphatase
2015
A new trend was developed for the formation of a complex between vanadium and flavonoid derivatives in order to increase the intestinal absorption and to reduce the toxicity of vanadium compounds. The vanadium–rutin complex was characterized by several spectroscopic techniques like ultraviolet (UV)–visible, Fourier transform infrared (FTIR), NMR, mass spectrometry, and microscopic evaluation by scanning electron microscopy. The mononuclear complex was formed by the interaction between vanadium and rutin with 1:2 metal to ligand stoichiometry. Antioxidant activity of the complex was evaluated by 1,1-diphenyl-2 picrylhydrazyl, ferric-reducing power, and 2,2′-azin-obis 3-ethylbenzothiazoline-6-sulphonic acid methods. It was shown that radical scavenging activity and ferric-reducing potential of free rutin was lower as compared with vanadium–rutin complex. The study was also investigated for oral acute toxicity and 28 days repeated oral subacute toxicity study of vanadium–rutin complex in balb/c mice. The vanadium–rutin complex showed mortality at a dose of 120 mg/kg in the balb/c mice. In 28 days repeated oral toxicity study, vanadium–rutin complex was administered to both sex of balb/c mice at dose levels of 90, 45, and 20 ppm, respectively. In addition, subacute toxicity study of vanadium–rutin complex (at 90 ppm dose level) showed increase levels of white blood cell (WBC), total bilirubin, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen and decrease level of total protein (TP) as compared with control group. Histopathological study of vanadium–rutin showed structural alteration in the liver, kidney, and stomach at 90 ppm dose level. No observed toxic level of vanadium–rutin complex at 20 ppm dose level could be good for further study.
Journal Article