Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
192
result(s) for
"Verrucomicrobia - classification"
Sort by:
Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community
2021
Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.
Legacies of past ecological disturbances are expected but challenging to demonstrate. Here the authors report a 10-year field experiment in a mountain grassland that shows ecological memory of soil microbial community and functioning in response to recurrent drought.
Journal Article
Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants
2020
Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood.
Verrucomicrobia
are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated
Verrucomicrobia
isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of
Oryza sativa
and
O. longistaminata
. Two of them are the first cultivated endophytes of
Verrucomicrobia
, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific
Verrucomicrobia
permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root
Verrucomicrobia
, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.
Journal Article
Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice
by
Zhang, Liying
,
Yang, Xin
,
Zhai, Rui
in
Akkermansia muciniphila
,
Animals
,
Anti-inflammatory agents
2019
is potential probiotic in that its type strain ATCC BAA-835 has beneficial effects upon obesity and diabetes. However, whether
can improve inflammatory bowel diseases (IBD), which is a form of chronic intestinal dysbiosis, is unknown. Hence, we used an isolated murine
strain (designated 139) and
type strain ATCC, to investigate their anti-inflammatory properties in cell models and in Dextran Sulfate Sodium (DSS)-induced chronic colitis of mice.
, the two
strains exerted similar anti-inflammatory properties as they both reduced IL-8 production by TNF-α-stimulated HT-29 cells. However, neither of the strains showed capacity to increase the differentiation of regulatory T (Treg)-cells from CD4+ T cell populations significantly.
, both
strains exerted anti-inflammatory effects on chronic colitis as they improved clinical parameters including spleen weight, colon inflammation index, and colon histological score. They also down-regulated the expression of the pro-inflammatory cytokines including TNF-α and IFN-γ in the colon of mice. However, the anti-inflammatory effects of strain ATCC were stronger than strain 139 in that ATCC significantly reduced spleen weight, colon inflammation index, and fecal lipocalin-2 content in mice with chronic colitis, while strain 139 was not. Dysbiosis of the gut microbiota was observed in mice with chronic colitis. Both
strains facilitated the normalization of the gut microbiota. The specific capacity of strain ATCC to modulate the differentiation of Tregs as well as increase production of short chain fatty acids, demonstrated strain-specific characteristics for these two
strains. This study suggests the potential beneficial effect of
on IBD and the importance of the future study of the function of
at the strain-level.
Journal Article
Distribution, Interaction and Functional Profiles of Epiphytic Bacterial Communities from the Rocky Intertidal Seaweeds, South Africa
2019
Interrelations between epiphytic bacteria and macroalgae are multifaceted and complicated, though little is known about the community structure, interaction and functions of those epiphytic bacteria. This study comprehensively characterized the epiphytic bacterial communities associated with eight different common seaweeds collected from a rocky intertidal zone on the Indian Ocean at Cape Vidal, South Africa. High-throughput sequencing analyses indicated that seaweed-associated bacterial communities were dominated by the phyla
Proteobacteria
,
Bacteroidetes
,
Firmicutes
,
Cyanobacteria
,
Planctomycetes
,
Actinobacteria
and
Verrucomicrobia
. Energy-dispersive X-ray (EDX) analysis showed the presence of elemental composition in the surface of examined seaweeds, in varying concentrations. Cluster analysis showed that bacterial communities of brown seaweeds (SW2 and SW4) were closely resembled those of green seaweeds (SW1) and red seaweeds (SW7) while those of brown seaweeds formed a separate branch. Predicted functional capabilities of epiphytic bacteria using PICRUSt analysis revealed abundance of genes related to metabolic and biosynthetic activities. Further important identified functional interactions included genes for bacterial chemotaxis, which could be responsible for the observed association and network of elemental-microbes interaction. The study concludes that the diversity of epiphytic bacteria on seaweed surfaces is greatly influenced by algal organic exudates as well as elemental deposits on their surfaces, which triggers chemotaxis responses from epiphytic bacteria with the requisite genes to metabolise those substrates.
Journal Article
Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum
2016
The recently isolated strain L21-Fru-AB
T
represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-AB
T
represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated
Verrucomicrobia
subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate. On the basis of the analyses of phenotypic, genomic and environmental data, it is proposed that strain L21-Fru-AB
T
and related bacteria are specifically adapted to the utilization of sulfated glycopolymers produced in microbial mats or biofilms.
Journal Article
An insight into intestinal mucosal microbiota disruption after stroke
by
Moore, Robert J.
,
Wong, Connie H. Y.
,
Stanley, Dragana
in
38/23
,
631/326/2565/2134
,
631/378/1689/534
2018
Recent work from our laboratory has provided evidence that indicates selective bacterial translocation from the host gut microbiota to peripheral tissues (i.e. lung) plays a key role in the development of post-stroke infections. Despite this, it is currently unknown whether mucosal bacteria that live on and interact closely with the host intestinal epithelium contribute in regulating bacterial translocation after stroke. Here, we found that the microbial communities within the mucosa of gastrointestinal tract (GIT) were significantly different between sham-operated and post-stroke mice at 24 h following surgery. The differences in microbiota composition were substantial in all sections of the GIT and were significant, even at the phylum level. The main characteristics of the stroke-induced shift in mucosal microbiota composition were an increased abundance of
Akkermansia muciniphila
and an excessive abundance of clostridial species. Furthermore, we analysed the predicted functional potential of the altered mucosal microbiota induced by stroke using PICRUSt and revealed significant increases in functions associated with infectious diseases, membrane transport and xenobiotic degradation. Our findings revealed stroke induces far-reaching and robust changes to the intestinal mucosal microbiota. A better understanding of the precise molecular events leading up to stroke-induced mucosal microbiota changes may represent novel therapy targets to improve patient outcomes.
Journal Article
Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem
by
Rocha-Estrada, Jorge
,
de la Torre, Mayra
,
Shapiro, Lori R.
in
Actinobacteria
,
Actinobacteria - classification
,
Actinobacteria - genetics
2018
Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.
Journal Article
Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa
2017
Understanding the abundance change of certain bacterial taxa is quite important for the study of soil microbiology. However, the observed differences of relative abundances by high-throughput techniques may not accurately reflect those of the actual taxon abundances. This study investigated whether soil microbial abundances coupling with microbial quantities can be more informative in describing the microbial population distribution under different locations. We analyzed relative abundances of the major species in soil microbial communities from Beijing and Tibet grasslands by using 16 S rRNA high-throughput sequencing technique, and quantified the absolute bacterial cell numbers directly or indirectly by multiple culture-independent measurements, including adenosine tri-phosphate (ATP), flow cytometry (FCM), quantitative real-time PCR (qPCR), phospholipid fatty acids (PLFA) and microbial biomass Carbon (MBC). By comparison of the relative abundance and the estimated absolute abundances (EAA) of the major components in soil microbial communities, several dominant phyla, including Actinobacteria, Bacteroidetes, Verrucomicrobia, Chloroflexi, Gemmatimonates and Planctomycetes, showed significantly different trends. These results indicated that the change in EAA might be more informative in describing the dynamics of a population in a community. Further studies of soil microbes should combine the quantification and relative abundances of the microbial communities for the comparisons among various locations.
Journal Article
Host adaptive immunity alters gut microbiota
by
Settlage, Robert
,
Zhang, Husen
,
Karyala, Saikumar V
in
631/326/2565/2134
,
Adaptive Immunity
,
Adaptive systems
2015
It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1
−/−
mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1
−
mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium
Akkermansia muciniphila
was highly enriched in Rag1
−/−
mice compared with the wild type. This enrichment was suppressed when Rag1
−/−
mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1
−/−
mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota’s composition and diversity.
Journal Article
Microbes inside—from diversity to function: the case of Akkermansia
2012
The human intestinal tract is colonized by a myriad of microbes that have developed intimate interactions with the host. In healthy individuals, this complex ecosystem remains stable and resilient to stressors. There is significant attention on the understanding of the composition and function of this intestinal microbiota in health and disease. Current developments in metaomics and systems biology approaches allow to probe the functional potential and activity of the intestinal microbiota. However, all these approaches inherently suffer from the fact that the information on macromolecules (DNA, RNA and protein) is collected at the ecosystem level. Similarly, all physiological and other information collected from isolated strains relates to pure cultures grown
in vitro
or in gnotobiotic systems. It is essential to integrate these two worlds of predominantly chemistry and biology by linking the molecules to the cells. Here, we will address the integration of omics- and culture-based approaches with the complexity of the human intestinal microbiota in mind and the mucus-degrading bacteria
Akkermansia
spp. as a paradigm.
Journal Article