Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
718 result(s) for "Visual Pathways - pathology"
Sort by:
Utility of ganglion cells for the evaluation of anterior visual pathway pathology: a review
The management of optic neuropathy is fundamental to neuro-ophthalmic practice. Following the invention of the ophthalmoscope, clinicians, for a century or more, relied upon fundus examination in the evaluation of optic neuropathy. However, the advent of optical coherence tomography, based on the principle of backscattering of light and interferometry, has revolutionized the analysis of optic nerve and retinal disorders. Optical coherence tomography has proven of particular value in the measurement, at the micron level, of the peripapillary retinal nerve fibre layer and the ganglion cell layer. These measurements have proven critical in the differential diagnosis and monitoring of optic neuropathy. Specifically, thinning of the peripapillary nerve fibre layer provides evidence of axonal loss affecting any sector of the optic nerve. Thinning of the macular ganglion cell layer, on the other hand, shows a more precise correlation with visual deficits due to retrograde degeneration following optic nerve damage, although limited to central retina. In daily practise, optical coherence tomography is of great value in assessing the diagnosis, prognosis and response to treatment in optic neuropathy. Particular advances have been made, for example, in the assessment of optic neuritis, papilloedema and chiasmal compression which have translated to everyday practice. As with any other imaging technology the clinician must have a clear understanding of acquisition artefacts. A further issue is the relatively limited normative database in sub-populations such as the young and individuals with a refractive error > + 5 or < −5 dioptres.
Hierarchical and nonhierarchical features of the mouse visual cortical network
Abstract Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex.
MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients
Background Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been reported in patients with aquaporin-4 antibody (AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD). The objective of this study was to describe optic neuritis (ON)-induced neuro-axonal damage in the retina of MOG-IgG-positive patients in comparison with AQP4-IgG-positive NMOSD patients. Methods Afferent visual system damage following ON was bilaterally assessed in 16 MOG-IgG-positive patients with a history of ON and compared with that in 16 AQP4-IgG-positive NMOSD patients. In addition, 16 healthy controls matched for age, sex, and disease duration were analyzed. Study data included ON history, retinal optical coherence tomography, visual acuity, and visual evoked potentials. Results Eight MOG-IgG-positive patients had a previous diagnosis of AQP4-IgG-negative NMOSD with ON and myelitis, and eight of (mainly recurrent) ON. Twenty-nine of the 32 eyes of the MOG-IgG-positive patients had been affected by at least one episode of ON. Peripapillary retinal nerve fiber layer thickness (pRNFL) and ganglion cell and inner plexiform layer volume (GCIP) were significantly reduced in ON eyes of MOG-IgG-positive patients (pRNFL = 59 ± 23 μm; GCIP = 1.50 ± 0.34 mm 3 ) compared with healthy controls (pRNFL = 99 ± 6 μm, p  < 0.001; GCIP = 1.97 ± 0.11 mm 3 , p  < 0.001). Visual acuity was impaired in eyes after ON in MOG-IgG-positive patients (0.35 ± 0.88 logMAR). There were no significant differences in any structural or functional visual parameters between MOG-IgG-positive and AQP4-IgG-positive patients (pRNFL: 59 ± 21 μm; GCIP: 1.41 ± 0.27 mm 3 ; Visual acuity = 0.72 ± 1.09 logMAR). Importantly, MOG-IgG-positive patients had a significantly higher annual ON relapse rate than AQP4-IgG-positive patients (median 0.69 vs. 0.29 attacks/year, p  = 0.004), meaning that on average a single ON episode caused less damage in MOG-IgG-positive than in AQP4-IgG-positive patients. pRNFL and GCIP loss correlated with the number of ON episodes in MOG-IgG-positive patients ( p  < 0.001), but not in AQP4-IgG-positive patients. Conclusions Retinal neuro-axonal damage and visual impairment after ON in MOG-IgG-positive patients are as severe as in AQP4-IgG-positive NMOSD patients. In MOG-IgG-positive patients, damage accrual may be driven by higher relapse rates, whereas AQP4-IgG-positive patients showed fewer but more severe episodes of ON. Given the marked damage in some of our MOG-IgG-positive patients, early diagnosis and timely initiation and close monitoring of immunosuppressive therapy are important.
Structural and Functional Brain Changes beyond Visual System in Patients with Advanced Glaucoma
In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.
Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines
•First to examine MRI-based subcortical volumes in the perinatally deafened cat.•Reveals large-scale disuse-driven atrophy in the deafened feline subcortex.•Magnitude of reductions in lower-level auditory nuclei are influenced by hierarchy.•Visual nuclei also exhibit reductions based on modified perceptual importance.•Deafened feline subcortex remains structurally symmetrical. In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus. Using both ROI-based and morphometric approaches, the regional macrostructure of four auditory and two visual nuclei were studied, as well as the corresponding volumetric asymmetries within and across groups. In the auditory pathway, significant bilateral volumetric reductions were revealed within the lower-level structures (cochlear nucleus, superior olivary complex, and inferior colliculus), alongside a shrinkage of solely the left medial geniculate body. Within the visual pathway, a significant bilateral volumetric reduction was found in the lateral geniculate nucleus, with the superior colliculus largely unaffected. These regional alterations, along with an extensive loss of volume throughout the brainstem of deprived cats, were attributed to disuse-driven atrophy corresponding to evolved functional demands reflective of a modified perceptual environment. Furthermore, the left-right volumetric symmetries of the control subcortex were preserved following deafness. Overall, the current study reinforces the notion that subcortical structures likely contribute to compensatory crossmodal plasticity prior to cortical processing, and that these deafness-induced adaptations appear to be influenced by both the level of the affected structure within its respective sensory processing hierarchy and the specifics of its afferent profile.
Ocular indicators of Alzheimer’s: exploring disease in the retina
Although historically perceived as a disorder confined to the brain, our understanding of Alzheimer’s disease (AD) has expanded to include extra-cerebral manifestation, with mounting evidence of abnormalities in the eye. Among ocular tissues, the retina, a developmental outgrowth of the brain, is marked by an array of pathologies in patients suffering from AD, including nerve fiber layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. While the hallmark pathological signs of AD, amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) comprising hyperphosphorylated tau (pTau) protein, have long been described in the brain, identification of these characteristic biomarkers in the retina has only recently been reported. In particular, Aβ deposits were discovered in post-mortem retinas of advanced and early stage cases of AD, in stark contrast to non-AD controls. Subsequent studies have reported elevated Aβ 42/40 peptides, morphologically diverse Aβ plaques, and pTau in the retina. In line with the above findings, animal model studies have reported retinal Aβ deposits and tauopathy, often correlated with local inflammation, retinal ganglion cell degeneration, and functional deficits. This review highlights the converging evidence that AD manifests in the eye, especially in the retina, which can be imaged directly and non-invasively. Visual dysfunction in AD patients, traditionally attributed to well-documented cerebral pathology, can now be reexamined as a direct outcome of retinal abnormalities. As we continue to study the disease in the brain, the emerging field of ocular AD warrants further investigation of how the retina may faithfully reflect the neurological disease. Indeed, detection of retinal AD pathology, particularly the early presenting amyloid biomarkers, using advanced high-resolution imaging techniques may allow large-scale screening and monitoring of at-risk populations.
Demyelination and neurodegeneration early in experimental autoimmune encephalomyelitis contribute to functional deficits in the anterior visual pathway
Impaired visual function is a prevalent feature of optic neuritis (ON) in multiple sclerosis (MS). Abnormal visual evoked potential (VEP) findings of increased latencies, reduced amplitudes and abnormal waveforms as well as decreased retinal nerve fiber layer (RNFL) assessed by optical coherence tomography (OCT) are hallmarks of ON-induced visual dysfunction. Here we utilized the experimental autoimmune encephalomyelitis (EAE) mouse model of MS to investigate the functional and pathological progression during early (before any clinical symptoms), peak (initial maximal clinical symptoms), and late (chronic disease for > 3 weeks) disease stages. Demyelination and initial stages of axon damage were observed in early EAE. Significant demyelination, inflammation, increased axon damage and impaired P1/N2 amplitudes and latencies by VEP were seen in middle and late EAE groups. A decrease in RNFL thickness by OCT was observed only during late EAE. NanoString analysis of optic nerves from late EAE indicated elevated inflammation-related genes, reduced myelin-related genes, and changes in axon degeneration-related genes. Early inflammatory demyelination and functional deficits of the visual pathway, if untreated, may lead to severe irrecoverable axon damage in EAE. These studies potentially help explain the progression of visual dysfunction during MS.
The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations
Hallucinations constitute one of the most representative and disabling symptoms of schizophrenia. Several Magnetic Resonance Imaging (MRI) findings support the hypothesis that distinct patterns of connectivity, particularly within networks involving the hippocampal complex (HC), could be associated with different hallucinatory modalities. The aim of this study was to investigate HC connectivity as a function of the hallucinatory modality, that is, auditory or visual. Two carefully selected subgroups of schizophrenia patients with only auditory hallucinations (AH) or with audio-visual hallucinations (A+VH) were compared using the following three complementary multimodal MRI methods: resting state functional MRI, diffusion MRI and structural MRI were used to analyze seed-based Functional Connectivity (sb-FC), Tract-Based Spatial Statistics (TBSS) and shape analysis, respectively. Sb-FC was significantly higher between the HC, the medial prefrontal cortex (mPFC) and the caudate nuclei in A+VH patients compared with the AH group. Conversely, AH patients exhibited a higher sb-FC between the HC and the thalamus in comparison with the A+VH group. In the A+VH group, TBSS showed specific higher white matter connectivity in the pathways connecting the HC with visual areas, such as the forceps major and the inferior-fronto-occipital fasciculus than in the AH group. Finally, shape analysis showed localized hippocampal hypertrophy in the A+VH group. Functional results support the fronto-limbic dysconnectivity hypothesis of schizophrenia, while specific structural findings indicate that plastic changes are associated with hallucinations. Together, these results suggest that there are distinct connectivity patterns in patients with schizophrenia that depend on the sensory-modality, with specific involvement of the HC in visual hallucinations.
Ube3a is required for experience-dependent maturation of the neocortex
The authors test whether experience-dependent neocortical modifications need Ube3a, an ubiquitin ligase implicated in autism and Angelman syndrome, using a mouse model of Angelman syndrome. They find that experience-dependent maturation of excitatory circuits in the visual cortex is impaired in these mice and that there are deficits in plasticity. This loss of plasticity was reversible with visual deprivation. Experience-dependent maturation of neocortical circuits is required for normal sensory and cognitive abilities, which are distorted in neurodevelopmental disorders. We tested whether experience-dependent neocortical modifications require Ube3a, an E3 ubiquitin ligase whose dysregulation has been implicated in autism and Angelman syndrome. Using visual cortex as a model, we found that experience-dependent maturation of excitatory cortical circuits was severely impaired in Angelman syndrome model mice deficient in Ube3a. This developmental defect was associated with profound impairments in neocortical plasticity. Normal plasticity was preserved under conditions of sensory deprivation, but was rapidly lost by sensory experiences. The loss of neocortical plasticity is reversible, as late-onset visual deprivation restored normal synaptic plasticity. Furthermore, Ube3a-deficient mice lacked ocular dominance plasticity in vivo when challenged with monocular deprivation. We conclude that Ube3a is necessary for maintaining plasticity during experience-dependent neocortical development and suggest that the loss of neocortical plasticity contributes to deficits associated with Angelman syndrome.
Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.