Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,166 result(s) for "Whole-Body Irradiation"
Sort by:
Effect of dose rate on pulmonary toxicity in patients with hematolymphoid malignancies undergoing total body irradiation
Background This study evaluated the effect of radiation dose rate in patients with hematolymphoid malignancies undergoing myeloablative conditioning with total body irradiation (TBI), for hematopoietic stem cell transplantation. Methods The incidence of pulmonary toxicity (PT) and treatment efficacy were compared between the conventional (≥ 6 cGy/min) and reduced dose rate (< 6 cGy/min). Seventy-seven patients receiving once-daily TBI between 2000 and 2016 were reviewed. We compared the cumulative rate of PT, overall survival (OS), relapse, and transplantation-related mortality (TRM) between conventional ( n  = 54) and reduced ( n  = 23) groups. Factors associated with PT were assessed in the presence of competing risks. Results The median follow-up time was 40.7 months, and PT occurred in 50 patients (64.9%). On multivariate analyses, the groups classified by the dose rate ( P  = 0.010), total dose ( P  = 0.025), and conditioning regimen ( P  = 0.029) were significant factors for the development of PT. OS was significantly reduced when PT occurred ( P  < 0.001). However, the OS, relapse, and TRM were not different between the two groups. Conclusions In summary, about two-thirds of the patients undergoing daily TBI experienced PT, which affected OS. Therefore, reducing the dose rate (less than 6 cGy/min) of TBI can decrease the risk of PT, without compromising the treatment efficacy.
Suppression of Thymic Lymphoma Induction by Life-Long Low-Dose-Rate Irradiation Accompanied by Immune Activation in C57BL/6 Mice
Ina, Y., Tanooka, H., Yamada, T. and Sakai, K. Suppression of Thymic Lymphoma Induction by Life-Long Low-Dose-Rate Irradiation Accompanied by Immune Activation in C57BL/6 Mice. Radiat. Res. 163, 153–158 (2005). The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs γ rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.
Protection of ovarian function by two distinct methods of ovarian shielding for young female patients who receive total body irradiation
To prevent ovarian dysfunction due to total body irradiation, we started ovarian shielding at our center (Saitama Medical Center, Jichi Medical University (SMC-JMU)) with a long source axis distance, which is different from the original method used at the University of Tokyo Hospital (UTH). We retrospectively analyzed the outcome of eight patients with a median age of 20.5 years from SMC-JMU and compared the results with the published data for eight patients with a median age of 22 years from UTH. The recovery of ovarian function was observed in five and six patients, respectively. The cumulative incidence of ovarian recovery, while treating relapse and death without ovarian recovery as competing risks, was 68.8 % at 2 years after transplantation in the total population, and there was no statistically significant difference between the two institutions ( p  = 0.85). Age and the history of previous chemotherapy did not affect the incidence of ovarian recovery. Two patients from each center had a relapse of leukemia. Overall, among the 11 patients who have survived without relapse, only one has not achieved ovarian recovery. In conclusion, ovarian shielding with both methods strongly protected ovarian function. However, we should continue to monitor the relapse rate among patients who undergo this procedure.
Instantaneous dose rate as a crucial factor in reducing mortality and normal tissue toxicities in murine total-body irradiation: a comparative study of dose rate combinations
Purpose The ultra-high dose rate (UHDR) radiation shows promise in eradicating tumors while reducing normal tissue toxicities. However, the biological outcomes of UHDR are influenced by various factors, particularly the mean dose rate and instantaneous dose rate. Additionally, the UHDR response at large field sizes is lacking. This study aimed to explore the impact of different dose rate combinations on gastrointestinal biological outcomes following total-body irradiations (TBI) and to examine the involved molecular signaling pathways. Method Female C57BL6/J mice received 10 Gy TBI using three modes: ultra-high mean and ultra-high instantaneous dose rate irradiation (HH mode), low mean and ultra-high instantaneous dose rate irradiation (LH mode), and low mean and low instantaneous dose rate irradiation (LL mode). Mice were euthanized at 3 h and 48 h post irradiation to assess acute normal tissue damage and perform transcriptome sequencing. Furthermore, a subset of mice was monitored for 30 days to evaluate survival. Results We found that when the instantaneous dose rate is sufficiently high (> 10 5 Gy/s), both ultra-high or low mean dose rate irradiation reduced mice mortality, myelosuppression, DNA damage, and cell apoptosis. The survival probabilities 30 days after 10 Gy TBI were 4/7, 4/6, and 0/6 in the HH, LH, and LL groups, respectively. Myelosuppression was lower at 3 h and 48 h post HH and LH irradiations than LL irradiation. The better regulated inflammatory response was evident at 48 h post HH and LH irradiation compared to LL irradiation. Additionally, DNA damages and cell apoptosis in the intestinal tissue were significantly reduced after HH and LH irradiations compared to LL irradiation. Transcriptome sequencing of intestinal tissues revealed that HH irradiation activated immune response pathways and suppressed mitochondrial related pathways compared to LL irradiation. Conclusion Our findings underscore the pivotal role of instantaneous dose rate in reducing radiation damages. When the instantaneous dose rate is sufficiently high (> 10 5 Gy/s), both ultra-high or low mean dose rate irradiation (HH and LH mode) reduced mice mortality, myelosuppression, DNA damage, and cell apoptosis. Understanding these dose rate effects and biological responses are crucial for optimizing radiotherapy strategies and exploring the potential benefits of UHDR irradiation.
Radio-protective effects of ultra-fine bubble hydrogen water and serum protein responses in whole-body radiation-exposed mice
Many studies have demonstrated hydrogen’s therapeutic and preventive effects on various diseases. Its selective antioxidant properties against hydroxyl radicals, which are responsible for the indirect effects of ionizing radiation, may make it worthy of attention as a new radio-protector. We recently developed new hydrogen water that is more stable and has higher antioxidant activity by using ultra-fine bubbles. In this study, female C57BL/6J mice given ad libitum access to ultra-fine bubble hydrogen water (UBHW) were subjected to whole-body irradiation (WBI) with X-rays, and the radio-protective effect of UBHW was evaluated. WBI with 6.0 Gy (sub-lethal dose) resulted in a 30-day survival rate of 100% in UBHW-fed mice, compared with 37% in control mice. In the case of WBI with 6.5 Gy (lethal dose), while the control mice died out in about 3 weeks, the 30-day survival rate improved to 40% by UBHW due to the high scavenging activity of hydroxy radicals. Twenty-six serum proteins involved in inflammatory and immune responses were significantly identified in UBHW-fed mice by proteomics, and UBHW may enhance and regulate these functions, resulting in reduced damage in mice exposed to WBI. We conclude that UBHW has good potential in radio-protection, with evidence that warrants further research efforts in this field.
Quantification of narrow band UVB radiation doses in phototherapy using diacetylene based film dosimeters
Narrow band ultraviolet B (NB UVB) radiation doses are administered during phototherapy for various dermatological ailments. Precise quantification of these doses is vital because the absorbed irradiation can cause adverse photochemical reactions which can lead to potential phototherapeutic side effects. The paper presents development of diacetylene based dosimeter for the determination of therapeutic NB UVB doses during phototherapy. The amide terminated diacetylene analogues have been synthesized by tailoring them with different functional groups. The synthesized diacetylene monomers have been introduced in a polyvinyl alcohol binder solution to obtain a film dosimeter. The influence of different headgroups on the colorimetric response to UV radiation has been studied. Among all the synthesized diacetylene analogues, the naphthylamine substituted diacetylene exhibited excellent color transition from white to blue color at 100 mJ cm −2 NB UVB radiation dose. The developed amide films can be easily pasted on multiple sites of the patient’s skin to monitor doses during phototherapy simultaneously at different anatomical regions. The digital image processing of the scanned images of the irradiated films facilitates rapid dose measurement which enables facile implementation of the developed film dosimeters and promising application in routine clinical dosimetry.
The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline
Should whole brain radiation therapy (WBRT) be used as the sole therapy in patients with newly-diagnosed, surgically accessible, single brain metastases, compared with WBRT plus surgical resection, and in what clinical settings? Target population This recommendation applies to adults with newly diagnosed single brain metastases amenable to surgical resection; however, the recommendation does not apply to relatively radiosensitive tumors histologies (i.e., small cell lung cancer, leukemia, lymphoma, germ cell tumors and multiple myeloma). Recommendation Surgical resection plus WBRT versus WBRT alone Level 1 Class I evidence supports the use of surgical resection plus post-operative WBRT, as compared to WBRT alone, in patients with good performance status (functionally independent and spending less than 50% of time in bed) and limited extra-cranial disease. There is insufficient evidence to make a recommendation for patients with poor performance scores, advanced systemic disease, or multiple brain metastases. If WBRT is used, is there an optimal dosing/fractionation schedule? Target population This recommendation applies to adults with newly diagnosed brain metastases. Recommendation Level 1 Class I evidence suggests that altered dose/fractionation schedules of WBRT do not result in significant differences in median survival, local control or neurocognitive outcomes when compared with “standard” WBRT dose/fractionation. (i.e., 30 Gy in 10 fractions or a biologically effective dose (BED) of 39 Gy10). If WBRT is used, what impact does tumor histopathology have on treatment outcomes? Target population This recommendation applies to adults with newly diagnosed brain metastases. Recommendation Given the extremely limited data available, there is insufficient evidence to support the choice of any particular dose/fractionation regimen based on histopathology. The following question is fully addressed in the surgery guideline paper within this series by Kalkanis et al. Given that the recommendation resulting from the systematic review of the literature on this topic is also highly relevant to the discussion of the role of WBRT in the management of brain metastases, this recommendation has been included below. Does the addition of WBRT after surgical resection improve outcomes when compared with surgical resection alone? Target population This recommendation applies to adults with newly diagnosed single brain metastases amenable to surgical resection. Recommendation Surgical resection plus WBRT versus surgical resection alone Level 1 Surgical resection followed by WBRT represents a superior treatment modality, in terms of improving tumor control at the original site of the metastasis and in the brain overall, when compared to surgical resection alone.
Massive expansion of multiple clones in the mouse hematopoietic system long after whole-body X-irradiation
Clonal hematopoiesis (CH) is prevalent in the elderly and associates with hematologic malignancy and cardiovascular disease. Although the risk of developing these diseases increases with radiation doses in atomic-bomb survivors, the causal relationship between radiation exposure and CH is unclear. This study investigated whether radiation exposure induces CH in mice 12–18 months after 3-Gy whole-body irradiation. We found radiation-associated increases in peripheral blood myeloid cells and red blood cell distribution width (RDW). Deep sequencing of bone marrow and non-hematopoietic tissue cells revealed recurrent somatic mutations specifically in the hematopoietic system in 11 of 12 irradiated mice but none in 6 non-irradiated mice. The irradiated mice possessed mutations with variant allele frequencies (VAFs) of > 0.02 on an average of 5.8 per mouse; mutations with VAFs of > 0.1 and/or deletion were prevalent. Examining hematopoietic stem/progenitor cells in two irradiated mice revealed several mutations co-existing in the same clones and multiple independent clones that deliver 60–80% of bone marrow nuclear cells. Our results indicate development of massive CH due to radiation exposure. Moreover, we have characterized mutations in radiation-induced CH.
Secondary radiation dose during high-energy total body irradiation
Aim The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Background Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. Materials and methods The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior–posterior/posterior–anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. Results The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: 56 Mn in the stainless steel and 187 W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Conclusion Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source–surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once.
Total Body Irradiation in Haematopoietic Stem Cell Transplantation: A Comprehensive Literature Review and Institutional Experience from the Policlinico of Catania
Background and Objectives: Total body irradiation (TBI) remains a cornerstone of conditioning for allogeneic haematopoietic stem-cell transplantation (HSCT). Whereas early research debated the need for irradiation, contemporary investigations focus on optimising dose, fractionation and delivery techniques. Material and Methods: We synthesised six decades of evidence, spanning from single-fraction cobalt treatments to modern helical tomotherapy and intensity-modulated total-marrow/lymphoid irradiation (TMI/TMLI). To complement the literature, we reported our institutional experience on 77 paediatric and adult recipients treated with conventional extended-source-to-skin-distance TBI at the University Hospital Policlinico “G. Rodolico–San Marco” between 2015 and 2025. Results: According to literature data, fractionated myeloablative schedules, typically 12 Gy in 6 fractions, provide superior overall survival and lower rates of severe graft-versus-host disease (GVHD) compared with historical single-dose regimens. Conversely, reduced-intensity protocols of 2–4 Gy broaden HSCT eligibility for older or comorbid patients with acceptable toxicity. Conformal planning reliably decreases mean lung dose without compromising engraftment, and early-phase trials are testing selective escalation to 16–20 Gy or omission of TBI in molecularly favourable cases. With regard to our institutional retrospective series, 92% of patients completed a 12-Gy regimen with only transient grade 1–2 nausea, fatigue or hypotension; all transplanted patients engrafted, and no grade ≥ 3 radiation pneumonitis occurred. Conclusions: Collectively, the published evidence and our experience support TBI as an irreplaceable component of HSCT conditioning and suggest that coupling it with advanced imaging, organ-sparing dosimetry and molecular response monitoring can deliver safer, more personalised therapy in the coming decade.