Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
364 result(s) for "Wnt-5a Protein - genetics"
Sort by:
Salt causes aging-associated hypertension via vascular Wnt5a under Klotho deficiency
Aging is associated with a high prevalence of hypertension due to elevated susceptibility of BP to dietary salt, but its mechanism is unknown. Serum levels of Klotho, an anti-aging factor, decline with age. We found that high salt (HS) increased BP in aged mice and young heterozygous Klotho-knockout mice and was associated with increased vascular expression of Wnt5a and p-MYPT1, which indicate RhoA activity. Not only the Wnt inhibitor LGK974 and the Wnt5a antagonist Box5 but Klotho supplementation inhibits HS-induced BP elevation, similarly to the Rho kinase inhibitor fasudil, associated with reduced p-MYPT1 expression in both groups of mice. In cultured vascular smooth muscle cells, Wnt5a and angiotensin II (Ang II) increased p-MYPT1 expression but knockdown of Wnt5a with siRNA abolished Ang II-induced upregulation of p-MYPT1, indicating that Wnt5a is indispensable for Ang II-induced Rho/ROCK activation. Notably, Klotho inhibited Wnt5a- and Ang II-induced upregulation of p-MYPT1. Consistently, Klotho supplementation ameliorated HS-induced augmentation of reduced renal blood flow (RBF) response to intra-arterial infusion of Ang II and the thromboxane A2 analog U46619, which activated RhoA in both groups of mice and were associated with the inhibition of BP elevation, suggesting that abnormal response of RBF to Ang II contributes to HS-induced BP elevation. Thus, Klotho deficiency underlies aging-associated salt-sensitive hypertension through vascular non-canonical Wnt5a/RhoA activation.
Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells
Aims/hypothesis Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. Methods Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1–20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15–20 µmol/l). Results There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold ( p <0.05) and 37% ( p <0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca 2+ -dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cβ; by 1.15-fold [ p <0.05] and 1.36-fold [ p <0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold ( p <0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% ( p <0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold ( p <0.01) and 23.3% ( p <0.05), respectively, with increased expression of LESC and diabetic markers. Conclusions/interpretation We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. Data availability The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ). Graphical Abstract
Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A
Background WNT5A is known to be involved in the pathogenesis of osteoarthritis. This study investigated the molecular mechanism of exosomal miR-92a-3p and WNT5A in chondrogenesis and cartilage degeneration. Methods Exosomal miR-92a-3p expression was assessed in vitro in a human mesenchymal stem cell (MSC) model of chondrogenesis and in normal and OA primary human chondrocytes (PHCs). MSCs and PHCs were treated with exosomes derived from MSC-miR-92a-3p (MSC-miR-92a-3p-Exos) or its antisense inhibitor (MSC-anti-miR-92a-3p-Exos), respectively. Small interfering RNAs (siRNAs) and luciferase reporter assay were used to reveal the molecular role of exosomal miR-92a-3p and WNT5A in chondrogenesis. The protective effect of exosomes in vivo was measured using Safranin-O and Fast Green staining and immunohistochemical staining. Results Exosomal miR-92a-3p expression was elevated in the MSC chondrogenic exosome, while it was significantly reduced in the OA chondrocyte-secreted exosome compared with normal cartilage. Treatment with MSC-miR-92a-3p-Exos promoted cartilage proliferation and matrix genes expression in MSCs and PHCs, respectively. In contrast, treatment with MSC-anti-miR-92a-3p-Exos repressed chondrogenic differentiation and reduced cartilage matrix synthesis by enhancing the expression of WNT5A. Luciferase reporter assay demonstrated that miR-92a-3p suppressed the activity of a reporter construct containing the 3’-UTR and inhibited WNT5A expression in both MSCs and PHCs. MSC-miR-92a-3p-Exos inhibit cartilage degradation in the OA mice model. Conclusions Our results suggest that exosomal miR-92a-3p regulates cartilage development and homeostasis by directly targeting WNT5A. This indicates that exosomal miR-92a-3p may act as a Wnt inhibitor and exhibits potential as a disease-modifying osteoarthritis drug.
WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a , we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system. WNTs can signal over long distances but how this arises in the brain is unclear. Here, the authors show that WNT5A is secreted from the choroid plexus of the developing hindbrain (but not the telencephalon) and transported in the CSF with lipoprotein particles in order to control cerebellar morphogenesis.
Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice
Stability of neuronal connectivity is critical for brain functions, and morphological perturbations are associated with neurodegenerative disorders. However, how neuronal morphology is maintained in the adult brain remains poorly understood. Here, we identify Wnt5a, a member of the Wnt family of secreted morphogens, as an essential factor in maintaining dendritic architecture in the adult hippocampus and for related cognitive functions in mice. Wnt5a expression in hippocampal neurons begins postnatally, and its deletion attenuated CaMKII and Rac1 activity, reduced GluN1 glutamate receptor expression, and impaired synaptic plasticity and spatial learning and memory in 3-mo-old mice. With increased age, Wnt5a loss caused progressive attrition of dendrite arbors and spines in Cornu Ammonis (CA)1 pyramidal neurons and exacerbated behavioral defects. Wnt5a functions cell-autonomously to maintain CA1 dendrites, and exogenous Wnt5a expression corrected structural anomalies even at late-adult stages. These findings reveal a maintenance factor in the adult brain, and highlight a trophic pathway that can be targeted to ameliorate dendrite loss in pathological conditions.
Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice
Hair loss is a common medical problem. In this study, we investigated the proliferation, migration, and growth factor expression of human dermal papilla (DP) cells in the presence or absence of treatment with mesenchymal stem cell extracellular vesicles (MSC-EVs). In addition, we tested the efficacy of MSC-EV treatment on hair growth in an animal model. MSC-EV treatment increased DP cell proliferation and migration, and elevated the levels of Bcl-2, phosphorylated Akt and ERK. In addition; DP cells treated with MSC-EVs displayed increased expression and secretion of VEGF and IGF-1. Intradermal injection of MSC-EVs into C57BL/6 mice promoted the conversion from telogen to anagen and increased expression of wnt3a, wnt5a and versican was demonstrated. The first time our results suggest that MSC-EVs have a potential to activate DP cells, prolonged survival, induce growth factor activation in vitro , and promotes hair growth in vivo .
H3K27me3-mediated PGC1α gene silencing promotes melanoma invasion through WNT5A and YAP
Oncogene-targeted and immune checkpoint therapies have revolutionized the clinical management of malignant melanoma and now offer hope to patients with advanced disease. Intimately connected to patients' overall clinical risk is whether the initial primary melanoma lesion will metastasize and cause advanced disease, but underlying mechanisms are not entirely understood. A subset of melanomas display heightened peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) expression that maintains cell survival cues by promoting mitochondrial function, but also suppresses metastatic spread. Here, we show that PGC1α expression in melanoma cells was silenced by chromatin modifications that involve promoter H3K27 trimethylation. Pharmacological EZH2 inhibition diminished H3K27me3 histone markers, increased PGC1α expression, and functionally suppressed invasion within PGC1α-silenced melanoma cells. Mechanistically, PGC1α silencing activated transcription factor 12 (TCF12), to increase expression of WNT5A, which in turn stabilized YAP protein levels to promote melanoma migration and metastasis. Accordingly, inhibition of components of this transcription-signaling axis, including TCF12, WNT5A, or YAP, blocked melanoma migration in vitro and metastasis in vivo. These results indicate that epigenetic control of melanoma metastasis involved altered expression of PGC1α and an association with the inherent metabolic state of the tumor.
Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation
Blastocyst implantation is a complex process requiring coordination of a dynamic sequence of embryo–uterine interactions. Blood vessels enter the uterus from the mesometrium, demarcating the uterus into mesometrial (M) and antimesometrial (AM) domains. Implantation occurs along the uterine longitudinal axis within specialized implantation chambers (crypts) that originate within the evaginations directed from the primary lumen toward the AM domain. The morphological orientation of crypts in rodent uteri was recognized more than a century ago, but the mechanism remained unknown. Here we provide evidence that planar cell polarity (PCP) signaling orchestrates directed epithelial evaginations to form crypts for implantation in mice. Uterine deletion of Vang-like protein 2, but not Vang-like protein 1, conferred aberrant PCP signaling, misdirected epithelial evaginations, defective crypt formation, and blastocyst attachment, leading to severely compromised pregnancy outcomes. The study reveals a previously unrecognized role for PCP in executing spatial cues for crypt formation and implantation. Because PCP is an evolutionarily conserved phenomenon, our study is likely to inspire implantation studies of this signaling pathway in humans and other species.
Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling
In vitro derivation of pancreatic β-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent β-cells are still hindered by incomplete understanding of the microenvironment’s role in β-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits β-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human β-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during β-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide β-cells for translational applications. In vitro differentiation of pancreatic beta cells offers a potential therapeutic approach for diabetes. Here they show human pluripotent stem cell derived pancreatic progenitors differentiate into insulin-secreting cells by crosstalk of WNT5A and BMP signaling.