Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
343 result(s) for "Wolbachia - metabolism"
Sort by:
One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster
Wolbachia are maternally inherited, intracellular bacteria at the forefront of vector control efforts to curb arbovirus transmission. In international field trials, the cytoplasmic incompatibility (CI) drive system of wMel Wolbachia is deployed to replace target vector populations, whereby a Wolbachia-induced modification of the sperm genome kills embryos. However, Wolbachia in the embryo rescue the sperm genome impairment, and therefore CI results in a strong fitness advantage for infected females that transmit the bacteria to offspring. The two genes responsible for the wMel-induced sperm modification of CI, cifA and cifB, were recently identified in the eukaryotic association module of prophage WO, but the genetic basis of rescue is unresolved. Here we use transgenic and cytological approaches to demonstrate that maternal cifA expression independently rescues CI and nullifies embryonic death caused by wMel Wolbachia in Drosophila melanogaster. Discovery of cifA as the rescue gene and previously one of two CI induction genes establishes a “Two-by-One” model that underpins the genetic basis of CI. Results highlight the central role of prophage WO in shaping Wolbachia phenotypes that are significant to arthropod evolution and vector control.
Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers
Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia -infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia -uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia , and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.
Evolutionary origin of insect–Wolbachia nutritional mutualism
Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia
Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
A Wolbachia factor for male killing in lepidopteran insects
Bacterial symbionts, such as Wolbachia species, can manipulate the sexual development and reproduction of their insect hosts. For example, Wolbachia infection induces male-specific death in the Asian corn borer Ostrinia furnacalis by targeting the host factor Masculinizer (Masc), an essential protein for masculinization and dosage compensation in lepidopteran insects. Here we identify a Wolbachia protein, designated Oscar, which interacts with Masc via its ankyrin repeats. Embryonic expression of Oscar inhibits Masc-induced masculinization and leads to male killing in two lepidopteran insects, O. furnacalis and the silkworm Bombyx mori . Our study identifies a mechanism by which Wolbachia induce male killing of host progeny. Bacterial symbionts, such as Wolbachia species, can manipulate the sexual development and reproduction of their insect hosts. Here, the authors identify a Wolbachia protein that interacts with a host masculinization factor and leads to male killing in lepidopteran insects.
Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host
Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host's fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia's genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia's riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect's reproduction in a selfish manner, which tends to affect a host's fitness negatively. Meanwhile, some theories predict that, at the same time, Wolbachia can directly affect the host's fitness positively, which may potentially reconcile the negative effect and facilitate spread and stability of the symbiotic association. Here we demonstrate, by using comparative genomic and experimental approaches, that among synthetic pathways for B vitamins, the synthetic pathway for riboflavin (vitamin B2) is exceptionally conserved among diverse insect-associated Wolbachia strains, and Wolbachia's riboflavin provisioning certainly contributes to growth, survival, and reproduction in an insect. These findings uncover a nutritional mechanism of a Wolbachia-mediated fitness benefit, which provides empirical evidence highlighting a \"Jekyll and Hyde\" aspect of Wolbachia infection.
Forward genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island
Wolbachia is one of the most prevalent bacterial endosymbionts, infecting approximately 40% of terrestrial arthropod species. Wolbachia is often a reproductive parasite but can also provide fitness benefits to its host, as, for example, protection against viral pathogens. This protective effect is currently being applied to fight arboviruses transmission by releasing Wolbachia -transinfected mosquitoes. Titre regulation is a crucial aspect of Wolbachia biology. Higher titres can lead to stronger phenotypes and fidelity of transmission but can have a higher cost to the host. Since Wolbachi a is maternally transmitted, its fitness depends on host fitness, and, therefore, its cost to the host may be under selection. Understanding how Wolbachia titres are regulated and other aspects of Wolbachi a biology has been hampered by the lack of genetic tools. Here we developed a forward genetic screen to identify new Wolbachia over-proliferative mutant variants. We characterized in detail two new mutants, w MelPop2 and w MelOctoless, and show that the amplification or loss of the Octomom genomic region lead to over-proliferation. These results confirm previous data and expand on the complex role of this genomic region in the control of Wolbachia proliferation. Both new mutants shorten the host lifespan and increase antiviral protection. Moreover, we show that Wolbachia proliferation rate in Drosophila melanogaster depends on the interaction between Octomom copy number, the host developmental stage, and temperature. Our analysis also suggests that the life shortening and antiviral protection phenotypes of Wolbachia are dependent on different, but related, properties of the endosymbiont; the rate of proliferation and the titres near the time of infection, respectively. We also demonstrate the feasibility of a novel and unbiased experimental approach to study Wolbachia biology, which could be further adapted to characterize other genetically intractable bacterial endosymbionts.
Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti
The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.
Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress
Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects.
The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors
Intracellular Wolbachia bacteria manipulate arthropod reproduction to promote their own inheritance. The most prevalent mechanism, cytoplasmic incompatibility (CI), traces to a Wolbachia deubiquitylase, CidB, and CidA. CidB has properties of a toxin, while CidA binds CidB and rescues embryonic viability. CidB is also toxic to yeast where we identified both host effects and high-copy suppressors of toxicity. The strongest suppressor was karyopherin-α, a nuclear-import receptor; this required nuclear localization-signal binding. A protein-interaction screen of Drosophila extracts using a substrate-trapping catalytic mutant, CidB*, also identified karyopherin-α; the P32 protamine-histone exchange factor bound as well. When CidB* bound CidA, these host protein interactions disappeared. These associations would place CidB at the zygotic male pronucleus where CI defects first manifest. Overexpression of karyopherin-α, P32, or CidA in female flies suppressed CI. We propose that CidB targets nuclear-protein import and protamine-histone exchange and that CidA rescues embryos by restricting CidB access to its targets.