Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,830 result(s) for "Xenograft Model Antitumor Assays - methods"
Sort by:
Applications of patient-derived tumor xenograft models and tumor organoids
Patient-derived tumor xenografts (PDXs), in which tumor fragments surgically dissected from cancer patients are directly transplanted into immunodeficient mice, have emerged as a useful model for translational research aimed at facilitating precision medicine. PDX susceptibility to anti-cancer drugs is closely correlated with clinical data in patients, from whom PDX models have been derived. Accumulating evidence suggests that PDX models are highly effective in predicting the efficacy of both conventional and novel anti-cancer therapeutics. This also allows “co-clinical trials,” in which pre-clinical investigations in vivo and clinical trials could be performed in parallel or sequentially to assess drug efficacy in patients and PDXs. However, tumor heterogeneity present in PDX models and in the original tumor samples constitutes an obstacle for application of PDX models. Moreover, human stromal cells originally present in tumors dissected from patients are gradually replaced by host stromal cells as the xenograft grows. This replacement by murine stroma could preclude analysis of human tumor-stroma interactions, as some mouse stromal cytokines might not affect human carcinoma cells in PDX models. The present review highlights the biological and clinical significance of PDX models and three-dimensional patient-derived tumor organoid cultures of several kinds of solid tumors, such as those of the colon, pancreas, brain, breast, lung, skin, and ovary.
Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer’s cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets. Glioblastoma is thought to arise from neural stem cells. Here, to investigate this, the authors use single-cell RNA-sequencing to compare glioblastoma to the fetal human brain, and find a similarity between glial progenitor cells and a subpopulation of glioblastoma cells.
High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
The authors implement a collection of patient-derived xenograft tumors to test cancer drug responses. Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.
CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) are rapidly emerging a promising new treatment for haematological and non-haematological malignancies. CAR-T therapy can induce rapid and durable clinical responses but is associated with unique acute toxicities. Moreover, CAR-T cells are vulnerable to immunosuppressive mechanisms. Here, we report that CAR-T cells release extracellular vesicles, mostly in the form of exosomes that carry CAR on their surface. The CAR-containing exosomes express a high level of cytotoxic molecules and inhibit tumour growth. Compared with CAR-T cells, CAR exosomes do not express Programmed cell Death protein 1 (PD1), and their antitumour effect cannot be weakened by recombinant PD-L1 treatment. In a preclinical in vivo model of cytokine release syndrome, the administration of CAR exosomes is relatively safe compared with CAR-T therapy. This study supports the use of exosomes as biomimetic nanovesicles that may be useful in future therapeutic approaches against tumours. Genetically engineered T cells expressing a chimeric antigen receptor (CAR-T cells) are a promising new treatment for cancer, but are associated with unique toxicities. Here, the authors test CAR-T-cell-derived exosomes as a surrogate for CAR-T cells and show that they can elicit a potent antitumour immune response in preclinical models of breast cancer with reduced signs of cytokine release syndrome compared with CAR-T therapy.
ARS2/MAGL signaling in glioblastoma stem cells promotes self-renewal and M2-like polarization of tumor-associated macrophages
The interplay between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAMs) promotes progression of glioblastoma multiforme (GBM). However, the detailed molecular mechanisms underlying the relationship between these two cell types remain unclear. Here, we demonstrate that ARS2 (arsenite-resistance protein 2), a zinc finger protein that is essential for early mammalian development, plays critical roles in GSC maintenance and M2-like TAM polarization. ARS2 directly activates its novel transcriptional target MGLL , encoding monoacylglycerol lipase (MAGL), to regulate the self-renewal and tumorigenicity of GSCs through production of prostaglandin E 2 (PGE 2 ), which stimulates β-catenin activation of GSC and M2-like TAM polarization. We identify M2-like signature downregulated by which MAGL-specific inhibitor, JZL184, increased survival rate significantly in the mouse xenograft model by blocking PGE 2 production. Taken together, our results suggest that blocking the interplay between GSCs and TAMs by targeting ARS2/MAGL signaling offers a potentially novel therapeutic option for GBM patients. How glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAMs) interact to promote progression of glioblastoma multiforme (GBM) is currently unclear. Here, the authors demonstrate a role for the ARS2/MAGL signalling in regulating self-renewal and tumorigenicity of GSCs and M2-like TAM polarization.
NUPR1 is a critical repressor of ferroptosis
Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Transcription factors play multiple roles in ferroptosis, although the key regulator for ferroptosis in iron metabolism remains elusive. Using NanoString technology, we identify NUPR1, a stress-inducible transcription factor, as a driver of ferroptosis resistance. Mechanistically, NUPR1-mediated LCN2 expression blocks ferroptotic cell death through diminishing iron accumulation and subsequent oxidative damage. Consequently, LCN2 depletion mimics NUPR1 deficiency with respect to ferroptosis induction, whereas transfection-enforced re-expression of LCN2 restores resistance to ferroptosis in NUPR1-deficient cells. Pharmacological or genetic blockade of the NUPR1-LCN2 pathway (using NUPR1 shRNA, LCN2 shRNA, pancreas-specific Lcn2 conditional knockout mice , or the small molecule ZZW-115) increases the activity of the ferroptosis inducer erastin and worsens pancreatitis, in suitable mouse models. These findings suggest a link between NUPR1-regulated iron metabolism and ferroptosis susceptibility. Ferroptosis is an iron-dependent form of oxidative cell death. In this study, the authors show that NUPR1, a stress-inducible transcription factor, may be a driver of ferroptosis resistance.
Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues
Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro , adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo , ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied ‘off label’ to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies. The Food and Drug Administration (FDA)-approved iron supplement ferumoxytol, which contains iron oxide nanoparticles, can suppress growth of early mammary cancers and lung cancer metastasis by inducing pro-inflammatory M1 type macrophage polarization in the tumour tissue, offering a new ‘off label’ application for an approved drug.
Pre-clinical modeling of cutaneous melanoma
Metastatic melanoma is challenging to manage. Although targeted- and immune therapies have extended survival, most patients experience therapy resistance. The adaptability of melanoma cells in nutrient- and therapeutically-challenged environments distinguishes melanoma as an ideal model for investigating therapy resistance. In this review, we discuss the current available repertoire of melanoma models including two- and three-dimensional tissue cultures, organoids, genetically engineered mice and patient-derived xenograft. In particular, we highlight how each system recapitulates different features of melanoma adaptability and can be used to better understand melanoma development, progression and therapy resistance. Despite the new targeted and immunotherapies for metastatic melanoma, several patients show therapeutic plateau. Here, the authors review the current pre-clinical models of cutaneous melanoma and discuss their strengths and limitations that may help with overcoming therapeutic plateau.
Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma
ObjectivePancreatic ductal adenocarcinoma (PDAC) is a disease of unmet medical need. While immunotherapy with chimeric antigen receptor T (CAR-T) cells has shown much promise in haematological malignancies, their efficacy for solid tumours is challenged by the lack of tumour-specific antigens required to avoid on-target, off-tumour effects. Switchable CAR-T cells whereby activity of the CAR-T cell is controlled by dosage of a tumour antigen-specific recombinant Fab-based ‘switch’ to afford a fully tunable response may overcome this translational barrier.DesignIn this present study, we have used conventional and switchable CAR-T cells to target the antigen HER2, which is upregulated on tumour cells, but also present at low levels on normal human tissue. We used patient-derived xenograft models derived from patients with stage IV PDAC that mimic the most aggressive features of PDAC, including severe liver and lung metastases.ResultsSwitchable CAR-T cells followed by administration of the switch directed against human epidermal growth factor receptor 2 (HER2)-induced complete remission in difficult-to-treat, patient-derived advanced pancreatic tumour models. Switchable HER2 CAR-T cells were as effective as conventional HER2 CAR-T cells in vivo testing a range of different CAR-T cell doses.ConclusionThese results suggest that a switchable CAR-T system is efficacious against aggressive and disseminated tumours derived from patients with advanced PDAC while affording the potential safety of a control switch.
Orthotopic patient-derived xenografts of paediatric solid tumours
A protocol producing orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy demonstrates proof of principle for using these tumours for basic and translational research on paediatric solid tumours. Xenograft archive Preclinical models of paediatric solid tumours that could help identify predictive biomarkers of a patient's sensitivity to therapy have been lacking. Over five years, the authors have developed an open access collection of orthotopic xenografts of 12 types of paediatric tumour. Genomic and epigenetic characterization reveals that xenografts retain characteristics of the tumour of origin. A high-throughput drug screen provides a resource for the community to identify potentially efficacious drug combinations. Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages 1 . Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30% 2 . To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient’s tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and vincristine can lead to complete response in multiple rhabdomyosarcoma orthotopic patient-derived xenografts tumours in vivo .