Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,812 result(s) for "Yield estimation"
Sort by:
Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms
Over the last few years, several Convolutional Neural Networks for object detection have been proposed, characterised by different accuracy and speed. In viticulture, yield estimation and prediction is used for efficient crop management, taking advantage of precision viticulture techniques. Convolutional Neural Networks for object detection represent an alternative methodology for grape yield estimation, which usually relies on manual harvesting of sample plants. In this paper, six versions of the You Only Look Once (YOLO) object detection algorithm (YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5x, and YOLOv5s) were evaluated for real-time bunch detection and counting in grapes. White grape varieties were chosen for this study, as the identification of white berries on a leaf background is trickier than red berries. YOLO models were trained using a heterogeneous dataset populated by images retrieved from open datasets and acquired on the field in several illumination conditions, background, and growth stages. Results have shown that YOLOv5x and YOLOv4 achieved an F1-score of 0.76 and 0.77, respectively, with a detection speed of 31 and 32 FPS. Differently, YOLO5s and YOLOv4-tiny achieved an F1-score of 0.76 and 0.69, respectively, with a detection speed of 61 and 196 FPS. The final YOLOv5x model for bunch number, obtained considering bunch occlusion, was able to estimate the number of bunches per plant with an average error of 13.3% per vine. The best combination of accuracy and speed was achieved by YOLOv4-tiny, which should be considered for real-time grape yield estimation, while YOLOv3 was affected by a False Positive–False Negative compensation, which decreased the RMSE.
Assessing the Yield of Wheat Using Satellite Remote Sensing-Based Machine Learning Algorithms and Simulation Modeling
Globally, estimating crop acreage and yield is one of the most critical issues that policy and decision makers need for assessing annual crop productivity and food supply. Nowadays, satellite remote sensing and geographic information system (GIS) can enable the estimation of these crop production parameters over large geographic areas. The present work aims to estimate the wheat (Triticum aestivum) acreage and yield of Maharajganj, Uttar Pradesh, India, using satellite-based data products and the Carnegie-Ames-Stanford Approach (CASA) model. Uttar Pradesh is the largest wheat-producing state in India, and this district is well known for its quality organic wheat. India is the leader in wheat grain export, and, hence, its monitoring of growth and yield is one of the top economic priorities of the country. For the calculation of wheat acreage, we performed supervised classification using the Random Forest (RF) and Support Vector Machine classifiers and compared their classification accuracy based on ground-truthing. We found that RF performed a significantly accurate acreage assessment (kappa coefficient 0.84) compared to SVM (0.68). The CASA model was then used to calculate the winter crop (Rabi, winter-sown, and summer harvested) wheat net primary productivity (NPP) in the study area for the 2020–2021 growth season using the RF-based acreage product. The model used for wheat NPP-yield conversion (CASA) showed 3100.27 to 5000.44 kg/ha over 148,866 ha of the total wheat area. The results showed that in the 2020–2021 growing season, all the districts of Uttar Pradesh had similar wheat growth trends. A total of 30 observational data points were used to verify the CASA model-based estimates of wheat yield. Field-based verification shows that the estimated yield correlates well with the observed yield (R2 = 0.554, RMSE = 3.36 Q/ha, MAE −0.56 t ha−1, and MRE = −4.61%). Such an accuracy for assessing regional wheat yield can prove to be one of the promising methods for calculating the whole region’s agricultural yield. The study concludes that RF classifier-based yield estimation has shown more accurate results and can meet the requirements of a regional-scale wheat grain yield estimation and, thus, can prove highly beneficial in policy and decision making.
A Survey on Deep Learning Based Crop Yield Prediction
Agriculture is the most important sector and the backbone of a developing country’s economy. Accurate crop yield prediction models can provide decision-making tools for farmers to make better decisions. Crop yield prediction has challenged researchers due to dynamic, noisy, non-stationary, non-linear features and complex data. The factors that influence crop yield are changes in temperature and rainfall, plant disease, pests, fertilizer, and soil quality. The paper discusses the factors affecting crop yield, explores the features utilized, and analysis deep learning methodologies and performance metrics utilized in crop yield prediction.
Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration
In Thailand, Napier grass is expected to play an important role as an energy resource for future power generation. To accomplish this goal, numerous areas are required for Napier grass plantations. Before introducing crops, the land potential of the country and the impact of crops on the environment should be assessed. The soil and water assessment tool (SWAT) model is very useful in investigating crop impacts and land potential. Unfortunately, the crop growth parameters of Napier grass are yet to be identified and, thus, conducting effective analysis has not been possible. Accordingly, in this study, parameter calibration and SWAT model validation of Napier grass production in Thailand was carried out using datasets from eight sites with 93 samples. Parameter sensitivity analysis was performed prior to parameter calibration, the results of which suggest that the radiation use efficiency and potential harvested index are both highly sensitive. The crop growth parameters were calibrated in order of their sensitivity index ranking, and the final values were obtained by reducing the root mean square error from 10.77 to 1.38 t·ha−1. The validation provides satisfactory results with coefficient of determination of 0.951 and a mean error of 0.321 t·ha−1. Using the developed model and calibrated parameters, local Napier grass dry matter yield can be evaluated accurately. The results reveal that, if only abandoned area in Thailand is used, then Napier grass can provide roughly 33,600–44,900 GWh of annual electricity, and power plant carbon dioxide (CO2) emissions can be reduced by approximately 21.2–28.3 Mt-CO2. The spatial distribution of estimated yield obtained in this work can be further utilized for land suitability analysis to help identify locations for Napier grass plantations, anaerobic digesters, and biogas power plants.
Improving Jujube Fruit Tree Yield Estimation at the Field Scale by Assimilating a Single Landsat Remotely-Sensed LAI into the WOFOST Model
Few studies were focused on yield estimation of perennial fruit tree crops by integrating remotely-sensed information into crop models. This study presented an attempt to assimilate a single leaf area index (LAI) near to maximum vegetative development stages derived from Landsat satellite data into a calibrated WOFOST model to predict yields for jujube fruit trees at the field scale. Field experiments were conducted in three growth seasons to calibrate input parameters for WOFOST model, with a validated phenology error of −2, −3, and −3 days for emergence, flowering, and maturity, as well as an R2 of 0.986 and RMSE of 0.624 t ha−1 for total aboveground biomass (TAGP), R2 of 0.95 and RMSE of 0.19 m2 m−2 for LAI, respectively. Normalized Difference Vegetation Index (NDVI) showed better performance for LAI estimation than a Soil-adjusted Vegetation Index (SAVI), with a better agreement (R2 = 0.79) and prediction accuracy (RMSE = 0.17 m2 m−2). The assimilation after forcing LAI improved the yield prediction accuracy compared with unassimilated simulation and remotely sensed NDVI regression method, showing a R2 of 0.62 and RMSE of 0.74 t ha−1 for 2016, and R2 of 0.59 and RMSE of 0.87 t ha−1 for 2017. This research would provide a strategy to employ remotely sensed state variables and a crop growth model to improve field-scale yield estimates for fruit tree crops.
Deep Count: Fruit Counting Based on Deep Simulated Learning
Recent years have witnessed significant advancement in computer vision research based on deep learning. Success of these tasks largely depends on the availability of a large amount of training samples. Labeling the training samples is an expensive process. In this paper, we present a simulated deep convolutional neural network for yield estimation. Knowing the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits or flowers by workers is a very time consuming and expensive process and it is not practical for big fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. Our network is trained entirely on synthetic data and tested on real data. To capture features on multiple scales, we used a modified version of the Inception-ResNet architecture. Our algorithm counts efficiently even if fruits are under shadow, occluded by foliage, branches, or if there is some degree of overlap amongst fruits. Experimental results show a 91% average test accuracy on real images and 93% on synthetic images.
Yield estimation model for lithography hotspot distortions
A yield formulation model to estimate the amount of lithography distortion expected in a printed layout is proposed. The yield formulation relates the probability of non-failure of a lithography hotspot with the yield loss. The application of the yield model is demonstrated for three different layout configurations showing that unidimensional designs may improve manufacturing yield.
Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling
Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.
Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry
This paper presents a novel multi-sensor framework to efficiently identify, track, localise and map every piece of fruit in a commercial mango orchard. A multiple viewpoint approach is used to solve the problem of occlusion, thus avoiding the need for labour-intensive field calibration to estimate actual yield. Fruit are detected in images using a state-of-the-art faster R-CNN detector, and pair-wise correspondences are established between images using trajectory data provided by a navigation system. A novel LiDAR component automatically generates image masks for each canopy, allowing each fruit to be associated with the corresponding tree. The tracked fruit are triangulated to locate them in 3D, enabling a number of spatial statistics per tree, row or orchard block. A total of 522 trees and 71,609 mangoes were scanned on a Calypso mango orchard near Bundaberg, Queensland, Australia, with 16 trees counted by hand for validation, both on the tree and after harvest. The results show that single, dual and multi-view methods can all provide precise yield estimates, but only the proposed multi-view approach can do so without calibration, with an error rate of only 1.36% for individual trees.