Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
34,578 result(s) for "acute leukemia"
Sort by:
Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial
Findings of retrospective studies suggest that sorafenib maintenance post-transplantation might reduce relapse in patients with FLT3 internal tandem duplication (FLT3-ITD) acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation. We investigated the efficacy and tolerability of sorafenib maintenance post-transplantation in this population. We did an open-label, randomised phase 3 trial at seven hospitals in China. Eligible patients (aged 18–60 years) had FLT3-ITD acute myeloid leukaemia, were undergoing allogeneic haematopoietic stem-cell transplantation, had an Eastern Cooperative Oncology Group performance status of 0–2, had composite complete remission before and after transplantation, and had haematopoietic recovery within 60 days post-transplantation. Patients were randomly assigned (1:1) to sorafenib maintenance (400 mg orally twice daily) or non-maintenance (control) at 30–60 days post-transplantation. Randomisation was done with permuted blocks (block size four) and implemented through an interactive web-based randomisation system. The primary endpoint was the 1-year cumulative incidence of relapse in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02474290; the trial is complete. Between June 20, 2015, and July 21, 2018, 202 patients were enrolled and randomly assigned to sorafenib maintenance (n=100) or control (n=102). Median follow-up post-transplantation was 21·3 months (IQR 15·0–37·0). The 1-year cumulative incidence of relapse was 7·0% (95% CI 3·1–13·1) in the sorafenib group and 24·5% (16·6–33·2) in the control group (hazard ratio 0·25, 95% CI 0·11–0·57; p=0·0010). Within 210 days post-transplantation, the most common grade 3 and 4 adverse events were infections (25 [25%] of 100 patients in the sorafenib group vs 24 [24%] of 102 in the control group), acute graft-versus-host-disease (GVHD; 23 [23%] of 100 vs 21 [21%] of 102), chronic GVHD (18 [18%] of 99 vs 17 [17%] of 99), and haematological toxicity (15 [15%] of 100 vs seven [7%] of 102). There were no treatment-related deaths. Sorafenib maintenance post-transplantation can reduce relapse and is well tolerated in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation. This strategy could be a suitable therapeutic option for patients with FLT3-ITD acute myeloid leukaemia. None.
Genomic subtyping and therapeutic targeting of acute erythroleukemia
Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders and defined five age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1 mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; and pediatric, NUP98 rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 overexpression being associated with a favorable prognosis and TP53 , FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases and included recurrent mutations of ALK and NTRK1 , the latter of which drives erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia. Analysis of genomic and clinical features of acute erythroid leukemia in comparison to other myeloid disorders supports its distinct classification, defines subgroups and suggests therapeutic vulnerabilities.
Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML
Oral use of the selective FLT3 kinase inhibitor gilteritinib in patients who had relapsed or refractory acute myeloid leukemia with FLT3 mutations led to a median overall survival of 9.3 months (vs. 5.6 months with standard chemotherapy) and complete remission with full or partial hematologic recovery in 34.0% of patients (vs. 15.3%).
Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation
Midostaurin, an oral multitargeted kinase inhibitor, is active in patients with a FLT3 mutation. Among patients with acute myeloid leukemia and this mutation, the addition of midostaurin to standard chemotherapy appeared to improve long-term outcomes.
Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia
In more than 400 older patients with AML who could not receive myeloablative therapy, the incidence of composite complete remission was higher (66.4% vs. 28.3) and the median overall survival was longer (14.7 vs. 9.6 months) among patients who received azacitidine plus venetoclax (a B-cell lymphoma 2 antagonist) than among those who received azacitidine alone.
PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies
PR1, an HLA-A2-restricted peptide derived from both proteinase 3 and neutrophil elastase, is recognized on myeloid leukemia cells by cytotoxic T lymphocytes (CTLs) that preferentially kill leukemia and contribute to cytogenetic remission. To evaluate safety, immunogenicity and clinical activity of PR1 vaccination, a phase I/II trial was conducted. Sixty-six HLA-A2+ patients with acute myeloid leukemia (AML: 42), chronic myeloid leukemia (CML: 13) or myelodysplastic syndrome (MDS: 11) received three to six PR1 peptide vaccinations, administered subcutaneously every 3 weeks at dose levels of 0.25, 0.5 or 1.0 mg. Patients were randomized to the three dose levels after establishing the safety of the highest dose level. Primary end points were safety and immune response, assessed by doubling of PR1/HLA-A2 tetramer-specific CTL, and the secondary end point was clinical response. Immune responses were noted in 35 of 66 (53%) patients. Of the 53 evaluable patients with active disease, 12 (24%) had objective clinical responses (complete: 8; partial: 1 and hematological improvement: 3). PR1-specific immune response was seen in 9 of 25 clinical responders versus 3 of 28 clinical non-responders ( P =0.03). In conclusion, PR1 peptide vaccine induces specific immunity that correlates with clinical responses, including molecular remission, in AML, CML and MDS patients.
Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study
Elderly patients (aged ≥65 years) with acute myeloid leukaemia have poor outcomes and no effective standard-of-care therapy exists. Treatment with hypomethylating agents such as azacitidine and decitabine is common, but responses are modest and typically short-lived. The oral anti-apoptotic B-cell lymphoma 2 protein inhibitor, venetoclax, has shown promising single-agent activity in patients with relapsed or refractory acute myeloid leukaemia and preclinical data suggested synergy between hypomethylating agents and venetoclax, which led to this combination phase 1b study. Previously untreated patients aged 65 years and over with acute myeloid leukaemia who were ineligible for standard induction therapy were enrolled into this non-randomised, open-label, phase 1b study. Patients were required to have an Eastern Cooperative Oncology Group performance status of 0–2 and either intermediate-risk or poor-risk cytogenetics. Patients were enrolled into one of three groups for the dose-escalation phase of this study: group A (venetoclax and intravenous decitabine 20 mg/m2 [days 1–5 of each 28-day cycle]), group B (venetoclax and subcutaneous or intravenous azacitidine 75 mg/m2 [days 1–7 of each 28-day cycle]), and group C (a venetoclax and decitabine substudy with the oral CYP3A inhibitor posaconazole, 300 mg twice on cycle 1, day 21, and 300 mg once daily from cycle 1, days 22–28, to assess its effect on venetoclax pharmacokinetics). Dose escalation followed a standard 3 + 3 design with at least three evaluable patients enrolled per cohort; daily target doses of venetoclax for groups A and B were 400 mg (cohort 1), 800 mg (cohorts 2 and 3), and 1200 mg (cohort 4), and 400 mg for group C. The primary endpoints were the safety and pharmacokinetics of venetoclax plus decitabine or azacitidine, and to determine the maximum tolerated dose and recommended phase 2 dose. Secondary endpoints included the preliminary anti-leukaemic activity of venetoclax with decitabine or azacitidine through the analysis of overall response, duration of response, and overall survival. We analysed safety, pharmacokinetics, and anti-leukaemic activity in all patients who received one or more venetoclax doses. The expansion phase of the study is ongoing but is closed to accrual. This trial is registered with ClinicalTrials.gov, number NCT02203773. 57 patients were enrolled in the study. 23 patients in group A and 22 patients in group B were enrolled between Nov 19, 2014, and Dec 15, 2015, and 12 patients in group C were enrolled between June 14, 2015, and Jan 16, 2016. As of data cutoff on June 15, 2016, the most common grade 3–4 treatment-emergent adverse events were thrombocytopenia (27 [47%] of 57 patients; nine in group A, 13 in group B, and five in group C), febrile neutropenia (24 [42%] of 57; 11 in group A, ten in group B, and three in group C), and neutropenia (23 [40%] of 57; 12 in group A, eight in group B, and three in group C). The most common serious treatment-emergent adverse event in groups A and B was febrile neutropenia (seven [30%] of 23 patients vs seven [32%] of 22), whereas in group C it was lung infection (four [33%] of 12 patients). 49 (86%) of 57 patients had treatment-related adverse events; the most common in groups A and B included nausea (12 [52%] patients vs seven [32%] patients), fatigue (six [26%] patients vs seven [32%]), and decreased neutrophil count (six [26%] patients vs six [27%]), whereas in group C the most common were nausea (seven [58%] of 12 patients), leucopenia (six [50%]), vomiting (five [42%]), and decreased platelet count (five [42%]). The maximum tolerated dose was not reached. The recommended phase 2 dose was 400 mg once a day or 800 mg with an interrupted dosing schedule (safety expansion). In total, four (7%) of 57 patients had died within 30 days of the first venetoclax dose caused by sepsis (group B), bacteraemia (group A), lung infection (group C), and respiratory failure (group A). Tumour lysis syndrome was not observed. Decitabine and azacitidine did not substantially affect venetoclax exposures. Overall, 35 (61%; 95% CI 47·6–74·0) of 57 patients achieved complete remission or complete remission with incomplete marrow recovery. In groups A and B, 27 (60%; 95% CI 44·3–74·3) of 45 patients had complete remission or complete remission with incomplete marrow recovery. Venetoclax plus hypomethylating agent therapy seems to be a novel, well-tolerated regimen with promising activity in this underserved patient population. Evaluation of expansion cohorts is ongoing at 400 mg and 800 mg doses using both hypomethylating agent combinations. AbbVie and Genentech.
Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial
Acute promyelocytic leukaemia is a chemotherapy-sensitive subgroup of acute myeloid leukaemia characterised by the presence of the PML–RARA fusion transcript. The present standard of care, chemotherapy and all-trans retinoic acid (ATRA), results in a high proportion of patients being cured. In this study, we compare a chemotherapy-free ATRA and arsenic trioxide treatment regimen with the standard chemotherapy-based regimen (ATRA and idarubicin) in both high-risk and low-risk patients with acute promyelocytic leukaemia. In the randomised, controlled, multicentre, AML17 trial, eligible patients (aged ≥16 years) with acute promyelocytic leukaemia, confirmed by the presence of the PML–RARA transcript and without significant cardiac or pulmonary comorbidities or active malignancy, and who were not pregnant or breastfeeding, were enrolled from 81 UK hospitals and randomised 1:1 to receive treatment with ATRA and arsenic trioxide or ATRA and idarubicin. ATRA was given to participants in both groups in a daily divided oral dose of 45 mg/m2 until remission, or until day 60, and then in a 2 weeks on–2 weeks off schedule. In the ATRA and idarubicin group, idarubicin was given intravenously at 12 mg/m2 on days 2, 4, 6, and 8 of course 1, and then at 5 mg/m2 on days 1–4 of course 2; mitoxantrone at 10 mg/m2 on days 1–4 of course 3, and idarubicin at 12 mg/m2 on day 1 of the final (fourth) course. In the ATRA and arsenic trioxide group, arsenic trioxide was given intravenously at 0·3 mg/kg on days 1–5 of each course, and at 0·25 mg/kg twice weekly in weeks 2–8 of course 1 and weeks 2–4 of courses 2–5. High-risk patients (those presenting with a white blood cell count >10 × 109 cells per L) could receive an initial dose of the immunoconjugate gemtuzumab ozogamicin (6 mg/m2 intravenously). Neither maintenance treatment nor CNS prophylaxis was given to patients in either group. All patients were monitored by real-time quantitative PCR. Allocation was by central computer minimisation, stratified by age, performance status, and de-novo versus secondary disease. The primary endpoint was quality of life on the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 global health status. All analyses are by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN55675535. Between May 8, 2009, and Oct 3, 2013, 235 patients were enrolled and randomly assigned to ATRA and idarubicin (n=119) or ATRA and arsenic trioxide (n=116). Participants had a median age of 47 years (range 16–77; IQR 33–58) and included 57 high-risk patients. Quality of life did not differ significantly between the treatment groups (EORTC QLQ-C30 global functioning effect size 2·17 [95% CI −2·79 to 7·12; p=0·39]). Overall, 57 patients in the ATRA and idarubicin group and 40 patients in the ATRA and arsenic trioxide group reported grade 3–4 toxicities. After course 1 of treatment, grade 3–4 alopecia was reported in 23 (23%) of 98 patients in the ATRA and idarubicin group versus 5 (5%) of 95 in the ATRA and arsenic trioxide group, raised liver alanine transaminase in 11 (10%) of 108 versus 27 (25%) of 109, oral toxicity in 22 (19%) of 115 versus one (1%) of 109. After course 2 of treatment, grade 3–4 alopecia was reported in 25 (28%) of 89 patients in the ATRA and idarubicin group versus 2 (3%) of 77 in the ATRA and arsenic trioxide group; no other toxicities reached the 10% level. Patients in the ATRA and arsenic trioxide group had significantly less requirement for most aspects of supportive care than did those in the ATRA and idarubicin group. ATRA and arsenic trioxide is a feasible treatment in low-risk and high-risk patients with acute promyelocytic leukaemia, with a high cure rate and less relapse than, and survival not different to, ATRA and idarubicin, with a low incidence of liver toxicity. However, no improvement in quality of life was seen. Cancer Research UK.
Ziftomenib in relapsed or refractory acute myeloid leukaemia (KOMET-001): a multicentre, open-label, multi-cohort, phase 1 trial
Ziftomenib (KO-539) is an oral selective menin inhibitor with known preclinical activity in menin-dependent acute myeloid leukaemia models. The primary objective of this study was to determine the recommended phase 2 dose in patients with relapsed or refractory acute myeloid leukaemia based on safety, pharmacokinetics, pharmacodynamics, and preliminary activity. KOMET-001 is a multicentre, open-label, multi-cohort, phase 1/2 clinical trial of ziftomenib in adults with relapsed or refractory acute myeloid leukaemia. Results of the phase 1 study, conducted at 22 hospitals in France, Italy, Spain, and the USA, are presented here and comprise the dose-escalation (phase 1a) and dose-validation and expansion (phase 1b) phases. Eligible patients were aged 18 years or older, had relapsed or refractory acute myeloid leukaemia, and had an Eastern Cooperative Oncology Group performance status of 2 or less. For phase 1a, patients (all molecular subtypes) received ziftomenib (50–1000 mg) orally once daily in 28-day cycles. For phase 1b, patients with NPM1 mutations or with KMT2A rearrangements were randomly assigned (1:1) using third-party interactive response technology to two parallel dose cohorts (200 mg and 600 mg ziftomenib). Primary endpoints were maximum tolerated dose or recommended phase 2 dose in phase 1a, and safety, remission rates, and pharmacokinetics supporting recommended phase 2 dose determination in phase 1b. Analyses were performed in all patients who received at least one dose of ziftomenib (modified intention-to-treat population). Phase 1a/1b is complete. This trial is registered with ClinicalTrials.gov, NCT04067336, and the EU Clinical Trials register, EudraCT 2019-001545-41. From Sept 12, 2019, to Aug 19, 2022, 83 patients received 50–1000 mg ziftomenib (39 [47%] were male and 44 [53%] were female). Median follow-up was 22·3 months (IQR 15·4–30·2). Of 83 patients, the most common grade 3 or worse treatment-emergent adverse events were anaemia (20 [24%]), febrile neutropenia (18 [22%]), pneumonia (16 [19%]), differentiation syndrome (12 [15%]), thrombocytopenia (11 [13%]), and sepsis (ten [12%]). Overall, 68 of 83 patients had serious adverse events, with two reported treatment-related deaths (one differentiation syndrome and one cardiac arrest). Differentiation syndrome rate and severity influenced the decision to halt enrolment of patients with KMT2A rearrangements. In Phase 1b, no responses were reported in patients treated at the 200 mg dose level. At the recommended phase 2 dose of 600 mg, nine (25%) of 36 patients with KMT2A rearrangement or NPM1 mutation had complete remission or complete remission with partial haematologic recovery. Seven (35%) of 20 patients with NPM1 mutation treated at the recommended phase 2 dose had a complete remission. Ziftomenib showed promising clinical activity with manageable toxicity in heavily pretreated patients with relapsed or refractory acute myeloid leukaemia. Phase 2 assessment of ziftomenib combination therapy in the upfront and relapsed or refractory setting is ongoing. Kura Oncology.
Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes
Mixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia characterized by leukemic blasts presenting myeloid and lymphoid markers. Here we report data from integrated genomic analysis on 31 MPAL samples and compare molecular profiling with that from acute myeloid leukemia (AML), B cell acute lymphoblastic leukemia (B-ALL), and T cell acute lymphoblastic leukemia (T-ALL). Consistent with the mixed immunophenotype, both AML-type and ALL-type mutations are detected in MPAL. Myeloid-B and myeloid-T MPAL show distinct mutation and methylation signatures that are associated with differences in lineage-commitment gene expressions. Genome-wide methylation comparison among MPAL, AML, B-ALL, and T-ALL sub-classifies MPAL into AML-type and ALL-type MPAL, which is associated with better clinical response when lineage-matched therapy is given. These results elucidate the genetic and epigenetic heterogeneity of MPAL and its genetic distinction from AML, B-ALL, and T-ALL and further provide proof of concept for a molecularly guided precision therapy approach in MPAL. Mixed phenotype acute leukemia (MPAL) is a rare leukemia that presents both myeloid and lymphoid markers on blasts. Here the authors perform genomic analysis to show MPAL involves genetic and epigenetic heterogeneity and is genetically distinct from AML, B-ALL, and T-ALL.