Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,118 result(s) for "acute phase"
Sort by:
Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial
Objectives To compare the effect of a single infusion of zoledronic acid (ZA) with placebo on knee pain and bone marrow lesions (BMLs). Methods Adults aged 50–80 years (n=59) with clinical knee osteoarthritis and knee BMLs were randomised to receive either ZA (5 mg/100 ml) or placebo. BMLs were determined using proton density-weighted fat saturation MR images at baseline, 6 and 12 months. Pain and function were measured using a visual analogue scale (VAS) and the knee injury and osteoarthritis outcome score (KOOS) scale. Results At baseline, mean VAS score was 54 mm and mean total BML area was 468 mm2. VAS pain scores were significantly reduced in the ZA group compared with placebo after 6 months (−14.5 mm, 95% CI −28.1 to −0.9) but not after 3 or 12 months. Changes on the KOOS scales were not significant at any time point. Reduction in total BML area was greater in the ZA group compared with placebo after 6 months (−175.7 mm2, 95% CI −327.2 to −24.3) with a trend after 12 months (−146.5 mm2, 95% CI −307.5 to +14.5). A greater proportion of those in the ZA group achieved a clinically significant reduction in BML size at 6 months (39% vs 18%, p=0.044). Toxicity was as expected apart from a high rate of acute phase reactions in treatment and placebo arms. Conclusions ZA reduces knee pain and areal BML size and increases the proportion improving over 6 months. Treatment of osteoarthritis may benefit from a lesion specific therapeutic approach. Clinical trial registration number ACTRN 12609000399291.
Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage
Neutrophil gelatinase-associated lipocalin (Ngal, 24p3, SIP24, lipocalin 2, or siderocalin) was originally purified from neutrophils, but with unknown function. Recently, it was identified that Ngal activates nephron formation in the embryonic kidney, is rapidly and massively induced in renal failure and possesses kidney-protective activity. We would like to propose that blood, urine, and kidney Ngal levels are the real-time indicators of active kidney damage, rather than one of many markers of functional nephron number (as Forest Fire Theory). Ngal is a novel iron-carrier protein exerting pleiotropic actions including the upregulation of epithelial marker E-cadherin expression, opening an exciting field in cell biology.
The impact of inflammation and acute phase activation in cancer cachexia
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia
Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood.
Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury
Main contributors to adverse outcomes in severely burned pediatric patients are profound and complex metabolic changes in response to the initial injury. It is currently unknown how long these conditions persist beyond the acute phase post-injury. The aim of the present study was to examine the persistence of abnormalities of various clinical parameters commonly utilized to assess the degree hypermetabolic and inflammatory alterations in severely burned children for up to three years post-burn to identify patient specific therapeutic needs and interventions. Nine-hundred seventy-seven severely burned pediatric patients with burns over 30% of the total body surface admitted to our institution between 1998 and 2008 were enrolled in this study and compared to a cohort non-burned, non-injured children. Demographics and clinical outcomes, hypermetabolism, body composition, organ function, inflammatory and acute phase responses were determined at admission and subsequent regular intervals for up to 36 months post-burn. Statistical analysis was performed using One-way ANOVA, Student's t-test with Bonferroni correction where appropriate with significance accepted at p<0.05. Resting energy expenditure, body composition, metabolic markers, cardiac and organ function clearly demonstrated that burn caused profound alterations for up to three years post-burn demonstrating marked and prolonged hypermetabolism, p<0.05. Along with increased hypermetabolism, significant elevation of cortisol, catecholamines, cytokines, and acute phase proteins indicate that burn patients are in a hyperinflammatory state for up to three years post-burn p<0.05. Severe burn injury leads to a much more profound and prolonged hypermetabolic and hyperinflammatory response than previously shown. Given the tremendous adverse events associated with the hypermetabolic and hyperinflamamtory responses, we now identified treatment needs for severely burned patients for a much more prolonged time.
The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice
(1) Background: Sepsis-induced acute kidney injury (AKI) is the most common form of acute kidney injury (AKI). We studied the temporal profile of the sepsis-induced renal proteome changes. (2) Methods: Male mice were injected intraperitoneally with bacterial lipopolysaccharide (LPS) or saline (control). Renal proteome was studied by LC-MS/MS (ProteomeXchange: PXD014664) at the early phase (EP, 1.5 and 6 h after 40 mg/kg LPS) and the late phase (LP, 24 and 48 h after 10 mg/kg LPS) of LPS-induced AKI. Renal mRNA expression of acute phase proteins (APP) was assessed by qPCR. (3) Results: Renal proteome change was milder in EP vs. LP. APPs dominated the proteome in LP (proteins upregulated at least 4-fold (APPs/all): EP, 1.5 h: 0/10, 6 h: 1/10; LP, 24 h: 22/47, 48 h: 17/44). Lipocalin-2, complement C3, fibrinogen, haptoglobin and hemopexin were the most upregulated APPs. Renal mRNA expression preceded the APP changes with peak effects at 24 h, and indicated renal production of the majority of APPs. (4) Conclusions: Gene expression analysis revealed local production of APPs that commenced a few hours post injection and peaked at 24 h. This is the first demonstration of a massive, complex and coordinated acute phase response of the kidney involving several proteins not identified previously.
Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions
Mechanisms driving acute food allergic reactions have not been fully characterized. We profile the dynamic transcriptome of acute peanut allergic reactions using serial peripheral blood samples obtained from 19 children before, during, and after randomized, double-blind, placebo-controlled oral challenges to peanut. We identify genes with changes in expression triggered by peanut, but not placebo, during acute peanut allergic reactions. Network analysis reveals that these genes comprise coexpression networks for acute-phase response and pro-inflammatory processes. Key driver analysis identifies six genes ( LTB4R , PADI4 , IL1R2 , PPP1R3D , KLHL2 , and ECHDC3 ) predicted to causally modulate the state of coregulated networks in response to peanut. Leukocyte deconvolution analysis identifies changes in neutrophil, naive CD4 + T cell, and macrophage populations during peanut challenge. Analyses in 21 additional peanut allergic subjects replicate major findings. These results highlight key genes, biological processes, and cell types that can be targeted for mechanistic study and therapeutic targeting of peanut allergy. Rising rates of peanut allergy pose a public health problem. Here, the authors profile blood transcriptomes during double-blind, placebo-controlled oral challenge in peanut-allergic children to identify gene and cell composition changes, and construct causal networks to detect key allergic reaction drivers.
Time Course of Changes in Performance and Inflammatory Responses After Acute Plyometric Exercise
Chatzinikolaou, A, Fatouros, IG, Gourgoulis, V, Avloniti, A, Jamurtas, AZ, Nikolaidis, MG, Douroudos, I, Michailidis, Y, Beneka, A, Malliou, P, Tofas, T, Georgiadis, I, Mandalidis, D, and Taxildaris, K. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res 24(5)1389-1398, 2010-The objectives of the present investigation were to study the inflammatory and performance responses after an acute bout of intense plyometric exercise during a prolonged recovery period. Participants were randomly assigned to either an experimental group (P, n = 12) that performed intense plyometric exercises or a control group (C, n = 12) that rested. The delayed onset of muscle soreness (DOMS), knee range of motion (KROM), creatine kinase (CK) and lactate dehydrogenase (LDH) activities, white blood cell count, C reactive protein (CRP), uric acid (UA), cortisol, testosterone, IL-6, IL-1b strength (isometric and isokinetic), and countermovement (CMJ) and static (SJ) jumping performance were measured at rest, immediately postexercise and at 24, 48, 72, 96, and 120 hours of recovery. Lactate was measured at rest and postexercise. Strength remained unchanged throughout recovery, but CMJ and SJ declined (p < 0.05) by 8-20%. P induced a marked rise in DOMS, CK, and LDH (peaked 24-48 hours postexercise) and a KROM decline. An acute-phase inflammatory response consisting of leukocytosis (postexercise and at 24 hours), an IL-6, IL-1b, CRP, and cortisol elevation (during the first 24 hours of recovery) and a delayed increase of UA (peaked at 48 hours) and testosterone (peaked at 72 hours) was observed in P. The results of this investigation indicate that performing an acute bout of intense plyometric exercise may induce a short-term muscle damage and marked but transient inflammatory responses. Jumping performance seems to deteriorate for as long as 72 hours postexercise, whereas strength appears to remain unchanged. The acute-phase inflammatory response after a plyometric exercise protocol appears to follow the same pattern as in other exercise models. These results clearly indicate the need of sufficient recovery between successive plyometric exercise training sessions.
Fracture Prevention with Zoledronate in Older Women with Osteopenia
In this randomized trial, women 65 years of age or older who had osteopenia received four infusions of zoledronate or normal saline at 18-month intervals. Zoledronate was associated with a significantly lower risk of fragility fractures than placebo.
2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative
Objective The 1987 American College of Rheumatology (ACR; formerly the American Rheumatism Association) classification criteria for rheumatoid arthritis (RA) have been criticised for their lack of sensitivity in early disease. This work was undertaken to develop new classification criteria for RA. Methods A joint working group from the ACR and the European League Against Rheumatism developed, in three phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated inflammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/or erosive disease—this being the appropriate current paradigm underlying the disease construct ‘RA’. Results In the new criteria set, classification as ‘definite RA’ is based on the confirmed presence of synovitis in at least one joint, absence of an alternative diagnosis better explaining the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in four domains: number and site of involved joints (range 0–5), serological abnormality (range 0–3), elevated acute-phase response (range 0–1) and symptom duration (two levels; range 0–1). Conclusion This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimise the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct ‘RA’.