Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "aminal structure"
Sort by:
Mechanochemical Synthesis of a Cocrystal of Two Supramolecular Hydrogen-Bonded Aggregates of 1,3,6,8-Tetraazatricyclo4.3.1.13,8undecane (TATU) with 4-tert-Butylphenol Bearing Different Hydrogen Bonding Interactions
The synthesis and single crystal structure of a new cocrystal, which is composed of OHphenolic∙∙∙OHphenolic∙∙∙Naminalic supramolecular heterosynthons assembled from 4-tert-butylphenol and the macrocyclic aminal TATU, is presented. This cocrystal was prepared by solvent-free assisted grinding, which is a commonly used mechanochemical method. Crystal structure, supramolecular assembly through hydrogen bonding interactions as well as the physical and spectroscopic properties of the title cocrystal are presented in this paper.
The Role of Hyperconjugation on the Structure and C–H Stretching Frequencies of 3,3′-Ethane-1,2-diyl- bis-1,3,5-triazabicyclo3.2.1octane (ETABOC): An X-Ray Structure and Vibrational Study
Structural and vibrational studies have been carried out for the most stable conformer of 3,3′-ethane-1,2-diyl-bis-1,3,5-triazabicyclo[3.2.1]octane (ETABOC) at the DFT/B3LYP/6-31G(dp) level using the Gaussian 03 software. In light of the computed vibrational parameters, the observed IR Bolhmann bands for the C2V, C2, and Ci symmetrical structures of ETABOC have been analyzed. Hyperconjugative interaction was done by Natural Bond Orbital Analysis. Interpretation of hyperconjugative interaction involving the lone pairs on the bridgehead nitrogen atoms with the neighboring C–N and C–C bonds defines the conformational preference of the title compound. The recorded X-ray diffraction bond parameters were compared with theoretical values calculated at B3LYP/6-31G(d,p) and HF/6-31G(d,p) level of theory showed that ETABOC adopts a chair conformation and possesses an inversion center.
A Convenient Synthesis of 3,7′-Bisindole Derivatives
An efficient and convenient method to synthesize highly functionalized 3,7′-bisindole derivatives has been developed via a Michael addition and cyclic condensation reaction of heterocyclic ketene aminals (HKAs) with 2-(1H-indol-3-yl)cyclohexa-2,5-diene-1,4-dione derivatives in ethanol-based solvents at room temperature. This strategy provides an efficient, environmentally friendly approach for easy access to various novel 3,7′-bisindole derivatives in moderate to good yields.
A Facile and Efficient Procedure for the Synthesis of New Benzimidazole-2-thione Derivatives
A series of benzimidazole-2-thione derivatives was synthesized using a reaction between the macrocyclic aminal 16H,13H-5:12,7:14-dimethanedibenzo[d,i]-[1,3,6,8] tetraazecine (DMDBTA, 5) and various nucleophiles in the presence of carbon disulfide. A full chemical characterization using IR, 1H-, 13C-NMR and GC-MS analyses of the new compounds is provided. These compounds were separated from the reaction mixture by column chromatography (CC) in highly pure form in 15%–51.4% yield.
Synthesis of gem-diamino acid derivatives by a Hofmann rearrangement
Starting from commercially available N-protected l-α-amino acids, N,N′-protected gem-diaminic units were obtained by a two-step methodology. A Hofmann reaction performed using a primary alcohol as the solvent to trap the isocyanate intermediate represents the key step of the new synthetic procedure. Then, the methodology was applied to α-carbamoyl α′-carboxyl aziridines, also functionalized with l-α-amino esters and stable gem-diaminic units characterized by an aziridine ring and by a retro-peptide modification were obtained. The use of the latter units in the retro-peptide chemistry allows to obtain modified peptides containing an aziridine ring able to behave as an electrophilic site and as a biomimetic structural analog of proline.