Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
48,440
result(s) for
"ammonium"
Sort by:
Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing
2021
Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing.
Journal Article
Antimicrobial and Antioxidant Activities of N-2-Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing Amino Acid Schiff Bases
2022
N-2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), a cationic quaternary ammonium salt polymer exhibiting good solubility in water, is widely used because of its low toxicity and good biocompatibility. Herein, through ion exchange reaction, we prepared N-2-hydroxypropyltrimethyl ammonium chitosan derivatives bearing amino acid Schiff bases with good biological activities. The accuracy of the structures was verified by FT-IR and 1H NMR. The antibacterial activity, antifungal activity, and scavenging ability of DPPH radical and superoxide radical of HACC derivatives were significantly improved compared with that of HACC. In particular, HACGM (HACC-potassium 2-((2-hydroxy-3-methoxybenzylidene)amino)acetate) and HACGB (HACC-potassium 2-((5-bromo-2-hydroxybenzylidene)amino)acetate) showed good inhibitory effect on bacteria and fungi, including Staphylococcus aureus, Escherichia coli, Botrytis cinerea, and Fusarium oxysporum f. sp. cubense. The inhibition rate of HACGB on Staphylococcus aureus and Escherichia coli could reach 100% at the concentration of 0.1 mg/mL, and the inhibition rate of HACGM and HACGB on Botrytis cinerea and Fusarium oxysporum f. sp. cubense could also reach 100% at the concentration of 0.5 mg/mL. Improving antimicrobial and antioxidant activities of HACC could provide ideas and experiences for the development and utilization of chitosan derivatives.
Journal Article
The first detection of quaternary ammonium compounds in breast milk: Implications for early-life exposure
2022
BackgroundQuaternary ammonium compounds (QACs), commonly used in cleaning, disinfecting, and personal care products, have recently gained worldwide attention due to the massive use of disinfectants during the COVID-19 pandemic. However, despite extensive use of these chemicals, no studies have focused on the analysis of QACs in human milk, a major route of exposure for infants.ObjectiveOur objectives were to identify and measure QACs in breast milk and evaluate early-life exposure to this group of compounds for nursing infants.MethodsEighteen QACs, including 6 benzylalkyldimethyl ammonium compounds (BACs, with alkyl chain lengths of C8-C18), 6 dialkyldimethyl ammonium compounds (DDACs, C8-C18), and 6 alkyltrimethyl ammonium compounds (ATMACs, C8-C18), were measured in breast milk samples collected from U.S. mothers. Daily lactational intake was estimated based on the determined concentrations for 0–12 month old nursing infants.ResultsThirteen of the 18 QACs were detected in breast milk and 7 of them were found in more than half of the samples. The total QAC concentrations (ΣQAC) ranged from 0.33 to 7.4 ng/mL (median 1.5 ng/mL). The most abundant QAC was C14-BAC with a median concentration of 0.45 ng/mL. The highest median ΣQAC estimated daily intake (EDI) was determined for <1-month old infants based on the average (using the median concentration) and high (using the 95th percentile concentration) exposure scenarios (230 and 750 ng/kg body weight/day, respectively).SignificanceOur findings provide the first evidence of the detection of several QACs in breast milk and identify breastfeeding as an exposure pathway to QACs for nursing infants.Impact statementOur findings provide the first evidence of QAC occurrence in breast milk and identify breastfeeding as one of the exposure pathways to QACs for nursing infants.
Journal Article
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
2024
Atmospheric secondary aerosols are often internally mixed with organic and inorganic components, particularly dicarboxylic acids, ammonium, sulfate, nitrate, and chloride. These complex compositions enable aqueous reaction between organic and inorganic species, significantly complicating aerosol phase behavior during aging and making phase predictions challenging. We investigated carboxylate–ammonium salt mixtures using attenuated total reflection Fourier-transformed infrared spectroscopy (ATR-FTIR). The mono-, di-, and tricarboxylates included sodium pyruvate (SP), sodium tartrate (ST), and sodium citrate (SC), while the ammonium salts included NH4NO3, NH4Cl, and (NH4)2SO4. Our results demonstrated that aqueous replacement reactions between carboxylates and ammonium salts were promoted by the formation and depletion of NH3 as relative humidity (RH) changed. For SP/ammonium aerosols, NaNO3 and Na2SO4 crystallized from 35.7 % to 12.7 % and from 65.7 % to 60.1 % RH, respectively, which is lower than the values for pure inorganics (62.5 ± 9 %–32 % RH for NaNO3 and 82 ± 7 %–68 ± 5 % RH for Na2SO4). Upon hydration, the crystalline Na2SO4 and NaNO3 deliquesced at 88.8 %–95.2 % and 76.5 ± 2 %–81.9 %, which is higher than the values of pure Na2SO4 (74 ± 4 %–98 % RH) and NaNO3 (65 %–77.1 ± 3 % RH). In contrast, reaction between ST or SC and (NH4)2SO4 was incomplete due to the gel structure at low RH. Unexpectedly, aqueous Na2SO4 crystallized upon humidification in ST/(NH4)2SO4 particles at 43.6 % RH and then deliquesced with increasing RH. This is attributed to increased ion mobility in viscous particles, leading to nucleation and growth of Na2SO4 crystals. Our findings highlight the intricate interplay between chemical components within organic/inorganic aerosol and the impact of replacement reactions on aerosol aging, phase state, and subsequently atmospheric processes.
Journal Article
Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner
2020
The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points• DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions.• The pH values and pH-regulated genes can affect the zeta potential of fungal cells.• Zeta potential of fungal cells directly affect the binding between DMADDM and cells.
Journal Article
Improvement of the Antioxidant and Antitumor Activities of Benzimidazole-Chitosan Quaternary Ammonium Salt on Drug Delivery Nanogels
2024
The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.
Journal Article
Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis
2023
Background
Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs.
Results
In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of
Bacillus aryabhattai
NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH
4
)
2
SO
4
. Whole-genome analysis showed that
B. aryabhattai
NM1-A2 contained various genes related to ammonium transporter (
amt
), ammonium assimilation (i.e.,
gdhA
,
gltB
, and
gltD
), organic acid synthesis (i.e.,
ackA
,
fdhD
, and
idh
), and phosphate transport (i.e.,
pstB
and
pstS
). Transcriptome data showed that the expression levels of
amt
,
gltB
,
gltD
,
ackA
and
idh
were downregulated, while
gdhA
and
fdhD
were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress.
Conclusions
The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.
Journal Article
Analysis of Two Single and Three Double Long-Chain Quaternary Ammonium Compounds via Non-Aqueous Capillary Electrophoresis with Indirect Ultraviolet Detection
2023
A novel method utilizing non-aqueous capillary electrophoresis (NACE) with indirect ultraviolet detection (IUD) has been developed for the analysis of five quaternary ammonium compounds (QACs). The QACs analyzed in this study include dodecyl trimethyl ammonium bromide, tetradecyl trimethyl ammonium bromide, dioctyl dimethyl ammonium chloride, octyldecyl dimethyl ammonium chloride and didecyl dimethy ammonium bromide. The separation process was carried out on an uncoated fused quartz capillary with a total length of 50.2 cm (effective length 40.0 cm) and a diameter of 50 μm. The separation buffer consisted of a mixture of MeOH/ACN (90:10, v/v) containing 2 mmol/L sodium acetate, 2 mmol/L trifluoroacetic acid (TFA) and 16 mmol/L dodecyl dimethyl benzyl ammonium chloride. The sample buffer utilized a mixture of MeOH/ACN (20:80, v/v) containing 2 mmol/L TFA. During analysis, a separation voltage of 7 kV was applied, resulting in a current of approximately 2.3 μA. The detection wavelength was set at 214 nm to ensure optimal sensitivity. Under optimal conditions, the method exhibited excellent performance characteristics, with a limit of detection of 0.5 mg/L and a limit of quantitation of 5.0 mg/L for the five QACs. Linear calibration curves were obtained in a concentration range of 5.0 to 100.0 mg/L, with correlation coefficients exceeding 0.999 for all compounds. The recoveries of the five QACs ranged from 92.3% to 114.7%, with relative standard deviations below 7.4%. To assess the applicability of the NACE-IUD method, 17 commercially available samples were successfully analyzed. The results confirmed the suitability of the method for accurate determination of the five QACs in disinfectant products. Notably, this method offers an environmentally friendly approach for the analysis of these QACs.
Journal Article
Thermodynamic Derivations of Various Ammonium Salt Deposition Equations Common to the Refining Industry
2018
Ammonium salts represent a common problem for the refining industry. These saltslead to fouling of piping and heat exchangers resulting in loss of duty, underdeposit corrosionwhen wetted, and corrosive sour water solutionsonce sufficient water is available to dissociate these salts into solution. To properly manage fouling and corrosion associated with these salts, knowledge of the temperatures at which these salts will deposit is critical. In this age of process control, these temperatures can be predicted in real-time provided the salt deposition temperature relationships are known. The salt deposition equations for salts most often encountered in refining are not in the public domain. To close this gap, ammonium salt deposition equations were derived for NH4Cl, NH4HS, NH4Br, and NH4Fusing fundamental thermodynamic equations of state with published thermodynamic properties for the individual chemical species/reactions.
Journal Article