Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,525
result(s) for
"aromatic acids"
Sort by:
Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution
by
Feist, Adam M.
,
Nielsen, Jens
,
Pereira, Rui
in
Acid production
,
Adaptation, Physiological - genetics
,
Adaptive laboratory evolution
2020
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.
Journal Article
Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit
2010
The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and α-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective α-keto acids, utilizing α-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.
Journal Article
Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial
by
Hu, Frank B
,
Toledo, Estefanía
,
Gómez-Gracia, Enrique
in
Amino acids
,
Clinical trials
,
Cohort analysis
2018
Aims/hypothesisBranched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) are associated with type 2 diabetes. However, repeated measurements of BCAA/AAA and their interactions with dietary interventions have not been evaluated. We investigated the associations between baseline and changes at 1 year in BCAA/AAA with type 2 diabetes in the context of a Mediterranean diet (MedDiet) trial.MethodsWe included 251 participants with incident type 2 diabetes and a random sample of 694 participants (641 participants without type 2 diabetes and 53 overlapping cases) in a case-cohort study nested within the PREvención con DIeta MEDiterránea (PREDIMED) trial. Participants were randomised to a MedDiet+extra-virgin olive oil (n = 273), a MedDiet+nuts (n = 324) or a control diet (n = 295). We used LC-MS/MS to measure plasma levels of amino acids. Type 2 diabetes was a pre-specified secondary outcome of the PREDIMED trial.ResultsElevated plasma levels of individual BCAAs/AAAs were associated with higher type 2 diabetes risk after a median follow-up of 3.8 years: multivariable HR for the highest vs lowest quartile ranged from 1.32 for phenylalanine ([95% CI 0.90, 1.92], p for trend = 0.015) to 3.29 for leucine ([95% CI 2.03, 5.34], p for trend<0.001). Increases in BCAA score at 1 year were associated with higher type 2 diabetes risk in the control group with HR per SD = 1.61 (95% CI 1.02, 2.54), but not in the MedDiet groups (p for interaction <0.001). The MedDiet+extra-virgin olive oil significantly reduced BCAA levels after 1 year of intervention (p = 0.005 vs the control group).Conclusions/interpretationOur results support that higher baseline BCAAs and their increases at 1 year were associated with higher type 2 diabetes risk. A Mediterranean diet rich in extra-virgin olive oil significantly reduced the levels of BCAA and attenuated the positive association between plasma BCAA levels and type 2 diabetes incidence.Clinical trial number: SRCTN35739639 (www.controlled-trials.com)
Journal Article
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis
2019
In Parkinson’s disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
It is unclear if neuromelanin plays a role in Parkinson’s disease pathogenesis since common laboratory animals lack this pigment. Authors show here that overexpression of human tyrosinase in the substantia nigra of rats resulted in an age-dependent production of human-like neuromelanin within nigral dopaminergic neurons and is associated with a Parkinson’s disease phenotype when allowed to accumulate above a specific threshold.
Journal Article
Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
2019
The production of bioactive plant compounds using microbial hosts is considered a safe, cost-competitive and scalable approach to their production. However, microbial production of some compounds like aromatic amino acid (AAA)-derived chemicals, remains an outstanding metabolic engineering challenge. Here we present the construction of a
Saccharomyces cerevisiae
platform strain able to produce high levels of
p
-coumaric acid, an AAA-derived precursor for many commercially valuable chemicals. This is achieved through engineering the AAA biosynthesis pathway, introducing a phosphoketalose-based pathway to divert glycolytic flux towards erythrose 4-phosphate formation, and optimizing carbon distribution between glycolysis and the AAA biosynthesis pathway by replacing the promoters of several important genes at key nodes between these two pathways. This results in a maximum
p
-coumaric acid titer of 12.5 g L
−1
and a maximum yield on glucose of 154.9 mg g
−1
.
Microbial production of aromatic amino acid (AAA)-derived chemicals remains an outstanding metabolic engineering challenge. Here, the authors engineer baker’s yeast for high levels
p
-coumaric acid production by rewiring the central carbon metabolism and channeling more flux to the AAA biosynthetic pathway.
Journal Article
A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
2017
A pathway for the production of aromatic amino acid metabolites in
Clostridium sporogenes
is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity.
Gut bacterial pharmacy
The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of
Clostridium sporogenes
that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of
C. sporogenes
.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream
1
,
2
, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont
Clostridium sporogenes
that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating
C. sporogenes
, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.
Journal Article
Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids
by
Baumann, Tobias
,
Ignatova, Zoya
,
Tseng, Hsueh-Wei
in
Amino acids
,
Amino Acids, Aromatic - chemistry
,
Amino Acids, Aromatic - metabolism
2020
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation
Journal Article
Multistage Molecular Simulations, Design, Synthesis, and Anticonvulsant Evaluation of 2-(Isoindolin-2-yl) Esters of Aromatic Amino Acids Targeting GABA A Receptors via π-π Stacking
by
Ramos-Hernández, Rodrigo Rafael
,
Vidal-Limon, Abraham
,
García-Rodríguez, Rosa Virginia
in
Amino acids
,
Amino Acids, Aromatic - chemical synthesis
,
Amino Acids, Aromatic - chemistry
2025
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABA
receptor. Sixteen derivatives were subjected to in silico assessments, including physicochemical and ADMET profiling, virtual screening-ensemble docking, and enhanced sampling molecular dynamics simulations (metadynamics calculations). Among these, compounds derived from the aromatic amino acids, phenylalanine, tyrosine, tryptophan, and histidine, exhibited superior predicted affinity, attributed to π-π stacking interactions at the benzodiazepine binding site of the GABA
receptor. Based on computational performance, the tyrosine and tryptophan derivatives were synthesized and further assessed in vivo using the pentylenetetrazole-induced seizure model in zebrafish (
). The tryptophan derivative produced comparable behavioral seizure reduction to the reference drug diazepam at the tested concentrations. The results implies that aromatic amino acid-derived isoindoline esters are promising anticonvulsant candidates and support the hypothesis that π-π interactions may play a critical role in modulating GABA
receptor binding affinity.
Journal Article
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
2024
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds. However, their chemical or enzymatic synthesis is challenging due to the presence of two stereocenters. We design phenylalanine ammonia lyases (PAL) variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids. Based on extensive computational analyses, we unravel the enigma behind PAL’s inability to accept β-methyl cinnamic acid (β-MeCA) as substrate and achieve the synthesis of the corresponding amino acids of β-MeCA and analogs using a double (PcPAL-L256V-I460V) and a triple mutant (PcPAL-F137V-L256V-I460V). The reactions are scaled-up using an optimized
E. coli
based whole-cell biotransformation system to produce ten β-branched phenylalanine analogs with high diastereoselectivity (dr > 20:1) and enantioselectivity (ee > 99.5%) in yields ranging from 41-71%. Moreover, we decipher the mechanism of PcPAL-L256V-I460V for the acceptance of β-MeCA and converting it with excellent stereoselectivity by computational simulations. Thus, this study offers an efficient method for synthesizing β-branched aromatic α-amino acids.
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds, but their synthesis is challenging due to the presence of two stereocenters. Here, the authors design phenylalanine ammonia lyases variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids and reveal the reasons for enzyme’s inability to accept β-methyl cinnamic acid.
Journal Article
Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency
by
Garcia-Cazorla, Angeles
,
Willemsen, Michèl
,
Mastrangelo, Mario
in
Age of Onset
,
Amino Acid Metabolism, Inborn Errors - blood
,
Amino Acid Metabolism, Inborn Errors - cerebrospinal fluid
2017
Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive neurometabolic disorder that leads to a severe combined deficiency of serotonin, dopamine, norepinephrine and epinephrine. Onset is early in life, and key clinical symptoms are hypotonia, movement disorders (oculogyric crisis, dystonia, and hypokinesia), developmental delay, and autonomic symptoms.
In this consensus guideline, representatives of the International Working Group on Neurotransmitter Related Disorders (iNTD) and patient representatives evaluated all available evidence for diagnosis and treatment of AADCD and made recommendations using SIGN and GRADE methodology. In the face of limited definitive evidence, we constructed practical recommendations on clinical diagnosis, laboratory diagnosis, imaging and electroencephalograpy, medical treatments and non-medical treatments. Furthermore, we identified topics for further research. We believe this guideline will improve the care for AADCD patients around the world whilst promoting general awareness of this rare disease.
Journal Article