Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,989
result(s) for
"attitude determination"
Sort by:
Satellite Attitude Determination and Map Projection Based on Robust Image Matching
2017
Small satellites have limited payload and their attitudes are sometimes difficult to determine from the limited onboard sensors alone. Wrong attitudes lead to inaccurate map projections and measurements that require post-processing correction. In this study, we propose an automated and robust scheme that derives the satellite attitude from its observation images and known satellite position by matching land features from an observed image and from well-registered base-map images. The scheme combines computer vision algorithms (i.e., feature detection, and robust optimization) and geometrical constraints of the satellite observation. Applying the proposed method to UNIFORM-1 observations, which is a 50 kg class small satellite, satellite attitudes were determined with an accuracy of 0.02°, comparable to that of star trackers, if the satellite position is accurately determined. Map-projected images can be generated based on the accurate attitudes. Errors in the satellite position can add systematic errors to derived attitudes. The proposed scheme focuses on determining satellite attitude with feature detection algorithms applying to raw satellite images, unlike image registration studies which register already map-projected images. By delivering accurate attitude determination and map projection, the proposed method can improve the image geometries of small satellites, and thus reveal fine-scale information about the Earth.
Journal Article
Solar Cell Detection and Position, Attitude Determination by Differential Absorption Imaging in Optical Wireless Power Transmission
2023
In optical wireless power transmission, position, size, and attitude of photovoltaic device (PV) must be determined from light source. A method proposed in the previous report is based on selective absorption characteristics of PV, and it is detected by differentiating images of strongly absorbable wavelength and one not. In this study, using two infrared wavelengths, two kinds of targets were detected by differential absorption imaging. One was a GaAs substrate which simulates diffuse rear surface, and the other was a real GaAs PV. It was found that the substrate’s reflective characteristic was diffuse, and the solar cell’s was mainly non-diffuse and accompanied by small diffuse component supporting wide-angle reflection. Using this feature, the position of the GaAs solar cell could be determined within a wide range of angle. Its attitude could also be determined with an accuracy of ±10 degrees to its normal. The position of diffuse GaAs substrate could be determined within a wide range of angles, and its attitude determination was proposed by exploiting its varying apparent size with tilt angle. Broad reflection characteristics of the GaAs substrate enabled attitude determination for a wide-angle range, and determination around normal would be erroneous.
Journal Article
Precise Attitude Determination of Ship Based on Star Sensor
2013
This paper analyses the attitude measured model and presents the attitude determination algorithm of space TT&C ship (space tracking, telemetry, and command ship) based on single star sensor. Considering lower precision of rolling angel for single star sensor, we proposed an algorithm by integrating attitude determination and redundancy measure to obtain high precision ship attitude data. Aiming at the circumstance of space TT&C ship, the factors that influence the precision of attitude measured data such as the number of star, atmosphere refraction correct and installation elevation are analyzed, which this can provide valuable references to the engineering design for star sensor used on space TT&C ship.
Journal Article
Attitude Tracking Algorithm Using GNSS Measurements from Short Baselines
2025
The paper addresses the problem of attitude determination using Global Navigation Satellite System (GNSS) measurements from multiple antennas mounted on a navigation platform. To achieve attitude determination by GNSS with typical accuracy down to tenths of a degree for one-meter baselines, GNSS phase measurements are employed. A key challenge with phase measurements is the presence of unknown integer ambiguities. Consequently, the attitude determination problem traditionally reduces to a nonlinear, non-convex optimization problem with integer constraints. No closed-form solution to this problem is known, and its real-time calculation is computationally intensive. Given an a priori initial attitude approximation, we propose a new algorithm for attitude tracking based on the reduction of the nonlinear orthogonality-constrained attitude estimation problem to a linear integer least squares problem, for which numerical methods are well known and computationally much less demanding. Additionally, a simple a priori model for GNSS measurement error variance is introduced, grounded on the geometry of satellite signal propagation through vacuum and the Earth’s atmosphere, providing a clear physical interpretation. Applying the algorithm to a real dataset collected from a quasi-static multi-antenna, multi-GNSS system with sub-meter baselines, we obtain promising results.
Journal Article
Sea Surface Height Measurements Based on Multi-Antenna GNSS Buoys
2024
Sea level monitoring is an essential foundational project for studying global climate change and the rise in sea levels. Satellite radar altimeters, which can sometimes provide inaccurate sea surface height data near the coast, are affected by both the instrument itself and geophysical factors. Buoys equipped with GNSS receivers offer a relatively flexible deployment at sea, allowing for long-term, high-precision measurements of sea surface heights. When operating at sea, GNSS buoys undergo complex movements with multiple degrees of freedom. Attitude measurements are a crucial source of information for understanding the motion state of the buoy at sea, which is related to the buoy’s stability and reliability during its development. In this study, we designed and deployed a four-antenna GNSS buoy with both position and attitude measurement capabilities near Jimiya Wharf in Qingdao, China, to conduct offshore sea surface monitoring activities. The GNSS data were processed using the Precise Point Positioning (PPK) method to obtain a time series of sea surface heights, and the accuracy was evaluated using synchronous observation data from a small sea surface height radar. The difference between the GNSS buoy and the full-time radar was calculated, resulting in a root-mean-square error (RMSE) of 1.15 cm. Concurrently, the attitude of the GNSS buoy was calculated using multi-antenna technology, and the vertical elevation of the GNSS buoy antenna was corrected using the obtained attitude data. The RMSE between the corrected GNSS buoy data and the high ground radar was 1.12 cm, indicating that the four-antenna GNSS buoy can not only acquire high-precision coastal sea level data but also achieve synchronous measurement of the buoy’s attitude. Furthermore, the data accuracy was also improved after the sea level attitude correction.
Journal Article
Inter-Spacecraft Rapid Transfer Alignment Based on Attitude Plus Angular Rate Matching Using Q-Learning Kalman Filter
2025
This study focuses on the transfer alignment issue between a master spacecraft and a slave spacecraft for the scenario in which the slave spacecraft is mounted on the master satellite before release and should be ready to depart and perform its space mission independently. The challenge of the transfer alignment is to estimate the attitude and calibration parameters of the gyroscope unit (GU) on the slave spacecraft based on the attitude determination system (ADS) of the master spacecraft. To improve the accuracy and rapidity of the transfer alignment, a novel attitude plus angular rate matching scheme is presented using fused sensor information on the master spacecraft. Accordingly, a fifteen-dimensional state-space model is derived to estimate the spacecraft attitude, the GU bias, scale factor error and misalignment simultaneously. A Q-learning Kalman filter (QKF) is designed to fine tune the process noise covariance matrix related to the calibration parameters, which benefits the state estimation performance. The simulation results show that the presented attitude plus angular rate matching scheme performs better than the traditional attitude matching scheme, and the QKF outperforms the standard Kalman filter (KF) and the adaptive Kalman filter (AKF).
Journal Article
An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites
by
Colagrossi, Andrea
,
Lavagna, Michèle
,
Bertacin, Roberto
in
Accuracy
,
Astrophysics
,
attitude determination
2023
The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a constellation of 3U nano-satellites for high energy astrophysics. The HERMES nano-satellites’ components have been designed, verified, and tested to detect and localize energetic astrophysical transients, such as short gamma-ray bursts (GRBs), which are the electromagnetic counterparts of gravitational wave events, thanks to novel miniaturized detectors sensitive to X-rays and gamma-rays. The space segment is composed of a constellation of CubeSats in low-Earth orbit (LEO), ensuring an accurate transient localization in a field of view of several steradians exploiting the triangulation technique. To achieve this goal, guaranteeing a solid support to future multi-messenger astrophysics, HERMES shall determine its attitude and orbital states with stringent requirements. The scientific measurements bind the attitude knowledge within 1 deg (1σa) and the orbital position knowledge within 10 m (1σo). These performances shall be reached considering the mass, volume, power, and computation constraints of a 3U nano-satellite platform. Thus, an effective sensor architecture for full-attitude determination was developed for the HERMES nano-satellites. The paper describes the hardware typologies and specifications, the configuration on the spacecraft, and the software elements to process the sensors’ data to estimate the full-attitude and orbital states in such a complex nano-satellite mission. The aim of this study was to fully characterize the proposed sensor architecture, highlighting the available attitude and orbit determination performance and discussing the calibration and determination functions to be implemented on-board. The presented results derived from model-in-the-loop (MIL) and hardware-in-the-loop (HIL) verification and testing activities and can serve as useful resources and a benchmark for future nano-satellite missions.
Journal Article
Static Attitude Determination Using Convolutional Neural Networks
by
dos Santos, Guilherme Henrique
,
Seman, Laio Oriel
,
Mendes, André Sales
in
Algorithms
,
attitude determination
,
machine learning
2021
The need to estimate the orientation between frames of reference is crucial in spacecraft navigation. Robust algorithms for this type of problem have been built by following algebraic approaches, but data-driven solutions are becoming more appealing due to their stochastic nature. Hence, an approach based on convolutional neural networks in order to deal with measurement uncertainty in static attitude determination problems is proposed in this paper. PointNet models were trained with different datasets containing different numbers of observation vectors that were used to build attitude profile matrices, which were the inputs of the system. The uncertainty of measurements in the test scenarios was taken into consideration when choosing the best model. The proposed model, which used convolutional neural networks, proved to be less sensitive to higher noise than traditional algorithms, such as singular value decomposition (SVD), the q-method, the quaternion estimator (QUEST), and the second estimator of the optimal quaternion (ESOQ2).
Journal Article
Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs
by
Klingbeil, Lasse
,
Eling, Christian
,
Kuhlmann, Heiner
in
Ambiguity
,
ambiguity resolution
,
attitude determination
2015
In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.
Journal Article
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
2025
For ground-based Celestial Navigation System/Strapdown Inertial Navigation System (CNS/SINS) integrated navigation with arcsecond-level accuracy, the current spatio-temporal transformation model involves a considerable amount of astronomical knowledge, making it difficult for ordinary navigation professionals to quickly master and operate. There has been no strict argumentation on which parameters can be simplified in the calculation process. Under the premise of ensuring that the attitude accuracy of ground integrated navigation meets the requirement of 5 arcseconds, through argumentation and quantitative analysis, the complex links in the spatio-temporal transformation model that contribute minimally to the final attitude measurement accuracy can be eliminated, significantly reducing the complexity of the model and lowering the threshold for its use. The factors considered in this paper include proper motion, annual parallax, light deflection, aberration of light, details of the precession-nutation model, details of the time system, and calibration parameters. Factors contributing less than 0.1 arcsecond to the accuracy during the coordinate transformation process are ignored or approximately simplified. Error analysis shows that the corrections for annual parallax and light deflection have negligible effects on accuracy. Except for the calculation of the Earth’s rotation angle, which requires a relatively precise UT1-UTC time, the time input in the calculation process of other astronomical parameters can directly use UTC time. Experimental measurements show that the calibration parameters obtained by the method in this paper have high robustness, and the parameter accuracy meets the requirements of attitude calculation. The proposed simplified spatio-temporal model reduces the computational load by 90%, can meet the arcsecond-level attitude measurement accuracy requirements of ground-based CNS/INS integrated navigation, and has the potential to be extended to more general dynamic or air/space-based intelligent navigation scenarios.
Journal Article