MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
Journal Article

Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model

2025
Request Book From Autostore and Choose the Collection Method
Overview
For ground-based Celestial Navigation System/Strapdown Inertial Navigation System (CNS/SINS) integrated navigation with arcsecond-level accuracy, the current spatio-temporal transformation model involves a considerable amount of astronomical knowledge, making it difficult for ordinary navigation professionals to quickly master and operate. There has been no strict argumentation on which parameters can be simplified in the calculation process. Under the premise of ensuring that the attitude accuracy of ground integrated navigation meets the requirement of 5 arcseconds, through argumentation and quantitative analysis, the complex links in the spatio-temporal transformation model that contribute minimally to the final attitude measurement accuracy can be eliminated, significantly reducing the complexity of the model and lowering the threshold for its use. The factors considered in this paper include proper motion, annual parallax, light deflection, aberration of light, details of the precession-nutation model, details of the time system, and calibration parameters. Factors contributing less than 0.1 arcsecond to the accuracy during the coordinate transformation process are ignored or approximately simplified. Error analysis shows that the corrections for annual parallax and light deflection have negligible effects on accuracy. Except for the calculation of the Earth’s rotation angle, which requires a relatively precise UT1-UTC time, the time input in the calculation process of other astronomical parameters can directly use UTC time. Experimental measurements show that the calibration parameters obtained by the method in this paper have high robustness, and the parameter accuracy meets the requirements of attitude calculation. The proposed simplified spatio-temporal model reduces the computational load by 90%, can meet the arcsecond-level attitude measurement accuracy requirements of ground-based CNS/INS integrated navigation, and has the potential to be extended to more general dynamic or air/space-based intelligent navigation scenarios.