Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "bimanual coupling"
Sort by:
In-depth quantification of bimanual coordination using the Kinarm exoskeleton robot in children with unilateral cerebral palsy
Background Robots have been proposed as tools to measure bimanual coordination in children with unilateral cerebral palsy (uCP). However, previous research only examined one task and clinical interpretation remains challenging due to the large amount of generated data. This cross-sectional study aims to examine bimanual coordination by using multiple bimanual robotics tasks in children with uCP, and their relation to task execution and unimanual performance. Methods The Kinarm exoskeleton robot was used in 50 children with uCP (mean age: 11 years 11 months ± 2 years 10 months, Manual Ability Classification system (MACS-levels: l = 27, ll = 16, lll = 7)) and 50 individually matched typically developing children (TDC). All participants performed three tasks: object-hit (hit falling balls), ball-on-bar (balance a ball on a bar while moving to a target) and circuit task (move a cursor along a circuit by making horizontal and vertical motions with their right and left hand, respectively). Bimanual parameters provided information about bimanual coupling and interlimb differences. Differences between groups and MACS-levels were investigated using ANCOVA with age as covariate (α < 0.05, η p 2 ). Correlation analysis (r) linked bimanual coordination to task execution and unimanual parameters. Results Children with uCP exhibited worse bimanual coordination compared to TDC in all tasks (p ≤ 0.05, η p 2  = 0.05–0.34). The ball-on-bar task displayed high effect size differences between groups in both bimanual coupling and interlimb differences (p < 0.001, η p 2  = 0.18–0.36), while the object-hit task exhibited variations in interlimb differences (p < 0.001, η p 2  = 0.22–0.34) and the circuit task in bimanual coupling (p < 0.001, η p 2  = 0.31). Mainly the performance of the ball-on-bar task (p < 0.05, η p 2  = 0.18–0.51) was modulated by MACS-levels, showing that children with MACS-level lll had worse bimanual coordination compared to children with MACS-level l and/or II. Ball-on-bar outcomes were highly related to task execution (r = − 0.75–0.70), whereas more interlimb differences of the object-hit task were moderately associated with a worse performance of the non-dominant hand (r = − 0.69–(− 0.53)). Conclusion This study gained first insight in important robotic tasks and outcome measures to quantify bimanual coordination deficits in children with uCP. The ball-on-bar task showed the most discriminative ability for both bimanual coupling and interlimb differences, while the object-hit and circuit tasks are unique to interlimb differences and bimanual coupling, respectively.
Inferior Parietal Lobe Activity Reveals Bimanual Coupling and Interference
When humans move both hands simultaneously, bimanual coupling or interference can occur. The circles‐lines paradigm is used to study the bimanual coupling and interference effects: Participants simultaneously draw either lines or circles with both hands (congruent), or draw lines with one hand and circles with the other hand (incongruent condition). Despite extensive behavioral research on bimanual coupling with this paradigm, our knowledge of the neural circuitry involved remains limited. Here, we capitalized on the advantages provided by functional near‐infrared spectroscopy to unveil the neural substrates of bimanual coupling within an ecologically valid experimental setting. Behavioral results confirmed previous literature, showing that the shapes become more oval due to the interference between the hands, causing the circle to resemble a line and vice versa. Additionally, performance in the congruent condition correlated with performance in the incongruent condition. From a neural perspective, we observed greater activity in sensorimotor areas and the right premotor area during the incongruent compared to the congruent condition. A novel temporal analysis of the time course of oxyhemoglobin signals revealed that the right hemisphere reached maximum amplitude before the left during the incongruent condition and revealed differences between conditions in parietal areas, showing that bimanual interference is associated not only with motor areas but also with associative areas. Finally, right inferior parietal lobe activity correlated with bimanual performance, suggesting a role for this area in bimanual tasks when the motor program of one hand is influenced by sensorimotor information from the contralateral hand. Our study demonstrates fNIRS effectiveness in investigating bimanual interference during the circles‐lines paradigm. fNIRS allows correct drawing positions, ensuring ecological validity. Performance in congruent tasks predicts incongruent performance. Time‐course analysis shows parietal differences, with the right hemisphere peaking earlier during the incongruent condition. Right inferior parietal lobe activity correlates with bimanual interference.
Abnormal Sense of Agency in Patients with Schizophrenia: Evidence from Bimanual Coupling Paradigm
A fruitful approach to the understanding the human awareness of action is the study of those pathologies in which some aspects of it are altered. Previous evidences showed that patients with schizophrenia tend to attribute someone else' actions to their own, as internally, rather than externally, generated. Here, we asked whether schizophrenics have an \"excessive\" sense of agency, while observing others' movements. We took advantage from the circles-lines task, known to show bimanual interferences. Twenty schizophrenics and 20 age-matched healthy controls were administered: (a) the bimanual version of the task: drawing lines with one hand and circles with the other; and (b) a modified version: drawing lines while observing the examiner drawing circles. In the bimanual version, patients and controls showed a comparable interference effect. In the observation version, schizophrenics, compared to controls, showed a significantly greater interference effect of the examiners' hand drawing circles on the own hand drawing lines. This effect was significantly correlated to the strength of the positive symptoms (hallucinations and delusions) and to the alteration of the sense of agency, reported during the task. These findings suggest that an altered sense of agency, as shown by schizophrenics, can induce objective consequences on the motor system.
Drawing lines while imagining circles: Neural basis of the bimanual coupling effect during motor execution and motor imagery
When people simultaneously draw lines with one hand and circles with the other hand, both trajectories tend to assume an oval shape, showing that hand motor programs interact (the so-called “bimanual coupling effect”). The aim of the present study was to investigate how motor parameters (drawing trajectories) and the related brain activity vary during bimanual movements both in real execution and in motor imagery tasks. In the ‘Real’ modality, subjects performed right hand movements (lines) and, simultaneously, Congruent (lines) or Non-congruent (circles) left hand movements. In the ‘Imagery’ modality, subjects performed only right hand movements (lines) and, simultaneously, imagined Congruent (lines) or Non-congruent (circles) left hand movements. Behavioral results showed a similar interference of both the real and the imagined circles on the actually executed lines, suggesting that the coupling effect also pertains to motor imagery. Neuroimaging results showed that a prefrontal–parietal network, mostly involving the pre-Supplementary Motor Area (pre-SMA) and the posterior parietal cortex (PPC), was significantly more active in Non-congruent than in Congruent conditions, irrespective of task (Real or Imagery). The data also confirmed specific roles of the right superior parietal lobe (SPL) in mediating spatial interference, and of the left PPC in motor imagery. Collectively, these findings suggest that real and imagined Non-congruent movements activate common circuits related to the intentional and predictive operation generating bimanual coupling, in which the pre-SMA and the PPC play a crucial role. •Bimanual coupling occurs even when the movements of one hand are only imagined.•Spatial interference emerges at the level of movement planning and organization.•A common prefrontal-parietal network is activated in both Real and Imagery tasks.•In real and imagined non-congruent movements pre-SMA and PPC play a crucial role.•The present data support a specific role of the left PPC in motor imagery.
A “matched” sensory reference can guide goal-directed movements of the affected hand in central post-stroke sensory ataxia
Patients with central post-stroke sensory ataxia (CPSA) suffer from not only somatosensory dysfunction but also the ataxic movement disorder of the affected limb. These sensory and motor impairments possibly interfere each other, but such interference is still unclear. We evaluated smoothness of grasp movements in CPSA patients using a kinematic analysis, and verified the effect of somatosensory reference from the intact hand on grasp movements. Eight CPSA patients were enrolled. We recorded their reach-and-pinch movements of both affected and intact hands toward the tip of the 3-cm-diameter vertical bar, using a three-dimensional measurement system. When executing these movements of one hand, the patients simultaneously pinched the same diameter bar as the goal tip (matched-reference condition: Matched-Ref) or the 5-cm-diameter thicker bar (mismatched-reference condition: Mismatched-Ref) by the other hand. The normalized jerk index (i.e., movement smoothness) of the affected hand was disturbed compared with the intact hand. The kinematic data of the finger opening and closing phases were also disturbed. These disturbances were partially improved with Matched-Ref but not Mismatched-Ref of the intact hand. We successfully evaluated the features of CPSA, indicating that the somatosensory reference method could be useful for rehabilitation in sensory ataxia.
Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments
When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the \"moving\" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.
Bimanual non-congruent actions in motor neglect syndrome: a combined behavioral/fMRI study
In Motor Neglect (MN) syndrome, a specific impairment in non-congruent bimanual movements has been described. In the present case-control study, we investigated the neuro-functional correlates of this behavioral deficit. Two right-brain-damaged (RBD) patients, one with (MN+) and one without (MN-) MN, were evaluated by means of functional Magnetic Resonance Imaging (fMRI) in a bimanual Circles-Lines (CL) paradigm. Patients were requested to perform right-hand movements (lines-drawing) and, simultaneously, congruent (lines-drawing) or non-congruent (circles-drawing) left-hand movements. In the behavioral task, MN- patient showed a bimanual-coupling-effect, while MN+ patient did not. The fMRI study showed that in MN-, a fronto-parietal network, mainly involving the pre-supplementary motor area (pre-SMA) and the posterior parietal cortex (PPC), was significantly more active in non-congruent than in congruent conditions, as previously shown in healthy subjects. On the contrary, MN+ patient showed an opposite pattern of activation both in pre-SMA and in PPC. Within this fronto-parietal network, the pre-SMA is supposed to exert an inhibitory influence on the default coupling of homologous muscles, thus allowing the execution of non-congruent movements. In MN syndrome, the described abnormal pre-SMA activity supports the hypothesis that a failure to inhibit ipsilesional motor programs might determine a specific impairment of non-congruent movements.
Methods to explore productive behaviors in personal and extrapersonal space
[...]the standardization of methods to analyze the same phenomenon in different patients is of undeniable value, as well as the possibility to develop paradigms suitable to be applied in both patients and healthy subjects. [...]these tasks can be easily adopted in clinical settings, such as stroke units, where sophisticated equipment for the recording of physiological parameters (i.e., those required to measure kinematics) are often not available. [...]putting together information from these tasks would contribute in producing a general model on arm control (both in terms of motor abilities and proprioceptive information) that would prove very useful in other fields, such as to develop neutrally controlled robotic arms that mimic biological limbs functioning (Andersen et al., 2004). [...]within this research topic we had the possibility to witness the importance to evaluate diverse paradigms and methodologies in order to understand impairments related to brain damage.
Visual information gain and task asymmetry interact in bimanual force coordination and control
This study examined the question of whether and how the influence of visual information on force coordination patterns is dependent on the settings of a task asymmetry constraint. In a bimanual isometric force experiment, the task asymmetry was manipulated via imposing different coefficients on the index finger forces such that the weighted sum of the finger forces matched the target force. The environmental constraint was quantified by the visual performance error and was manipulated through the change of visual gain (number of pixels on the screen representing the unit of force). The constraint arising from the individual was quantified by the bilateral coupling effect (i.e., symmetric force production) between hands. The results revealed improved performance in terms of lower variability and performance error and more complex total force structure with higher visual gain. The influence of visual gain on the force coordination pattern, however, was found to be dependent on the task coefficients imposed on the finger forces. Namely, the force sharing between hands became more symmetric with high visual gain only when the right finger force had the higher coefficient, and an error-compensatory strategy was evident with high gain only when symmetric coefficients were imposed on the two fingers. The findings support the proposition that the motor coordination and control patterns are organized by the interactive influence of different categories of constraints where the functional influence of the information provided is dependent on the motor output.
Bimanual non-congruent actions in motor neglect: a combined behavioral/fMRI study
In Motor Neglect (MN) syndrome, a specific impairment in non-congruent bimanual movements has been described. In the present case-control study, we investigated the neuro-functional correlates of this behavioral deficit. Two right-brain-damaged patients, one with (MN+) and one without (MN-) MN, were evaluated by means of functional Magnetic Resonance Imaging (fMRI) in a bimanual Circles-Lines paradigm. Patients were requested to perform right-hand movements (lines-drawing) and, simultaneously, congruent (lines-drawing) or non-congruent (circles-drawing) left-hand movements. In the behavioral task, MN- patient showed a bimanual-coupling-effect, while MN+ patient did not. The fMRI study showed that in MN-, a fronto-parietal network, mainly involving the pre-supplementary motor area (pre-SMA) and the posterior parietal cortex (PPC), was significantly more active in non-congruent than in congruent conditions, as previously shown in healthy subjects. On the contrary, MN+ patient showed an opposite pattern of activation both in pre-SMA and in PPC. Within this fronto-parietal network, the pre-SMA is supposed to exert an inhibitory influence on the default coupling of homologous muscles, thus allowing the execution of non-congruent movements. In MN syndrome, the described abnormal pre-SMA activity supports the hypothesis that a failure to inhibit ipsilesional motor programs might determine a specific impairment of non-congruent movements.