Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7,701 result(s) for "bone marrow stromal cell"
Sort by:
Phloretin Suppresses Bone Morphogenetic Protein-2-Induced Osteoblastogenesis and Mineralization via Inhibition of Phosphatidylinositol 3-kinases/Akt Pathway
Phloretin has pleiotropic effects, including glucose transporter (GLUT) inhibition. We previously showed that phloretin promoted adipogenesis of bone marrow stromal cell (BMSC) line ST2 independently of GLUT1 inhibition. This study investigated the effect of phloretin on osteoblastogenesis of ST2 cells and osteoblastic MC3T3-E1 cells. Treatment with 10 to 100 µM phloretin suppressed mineralization and expression of osteoblast differentiation markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), type 1 collagen, runt-related transcription factor 2 (Runx2), and osterix (Osx), while increased adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid-binding protein 4, and adiponectin. Phloretin also inhibited mineralization and decreased osteoblast differentiation markers of MC3T3-E1 cells. Phloretin suppressed phosphorylation of Akt in ST2 cells. In addition, treatment with a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor, LY294002, suppressed the mineralization and the expression of osteoblast differentiation markers other than ALP. GLUT1 silencing by siRNA did not affect mineralization, although it decreased the expression of OCN and increased the expression of ALP, Runx2, and Osx. The effects of GLUT1 silencing on osteoblast differentiation markers and mineralization were inconsistent with those of phloretin. Taken together, these findings suggest that phloretin suppressed osteoblastogenesis of ST2 and MC3T3-E1 cells by inhibiting the PI3K/Akt pathway, suggesting that the effects of phloretin may not be associated with glucose uptake inhibition.
Osteoinduction and survival of osteoblasts and bone‐marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three‐dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long‐term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform‐sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live‐dead assay, and real‐time RT‐PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell‐seeded scaffold product for applications in regenerative medicine.
Culture Condition of Bone Marrow Stromal Cells Affects Quantity and Quality of the Extracellular Vesicles
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.
Impact of coadministration of apigenin and bone marrow stromal cells on damaged ovaries due to chemotherapy in rat: An experimental study
Background: Apigenin is a plant-derived flavonoid with antioxidative and antiapoptotic effects. Bone marrow stromal cells (BMSCs) are a type of mesenchymal stem cells (MSCs) that may recover damaged ovaries. It seems that apigenin may promote the differentiation of MSCs. Objective: The aim of this study was to investigate the effect of coadministration of apigenin and BMSCs on the function, structure, and apoptosis of the damaged ovaries after creating a chemotherapy model with cyclophosphamide in rat. Materials and Methods: For chemotherapy induction and ovary destruction, cyclophosphamide was injected intraperitoneally to 40 female Wistar rats (weighing 180–200 gr, 10 wk old) for 14 days. Then, the rats were randomly divided into four groups (n = 10/each): control, apigenin, BMSCs and coadministration of apigenin and BMSCs. Injection of apigenin was performed intraperitoneally and BMSC transplantation was performed locally in the ovaries. The level of anti-mullerian hormone serum by ELISA kit, the number of oocytes by superovulation, the number of ovarian follicles in different stages by H&E staining, and the expression of ovarian Bcl-2 and Bax proteins by western blot were assessed after four wk. Results: The results of serum anti-mullerian hormone level, number of oocytes and follicles, and Bcl-2/Bax expression ratio showed that coadministration of apigenin and BMSCs significantly recovered the ovarian function, structure, and apoptosis compared to the control, BMSC, and apigenin groups (p < 0.001). Conclusion: The results suggest that the effect of coadministration of apigenin and BMSCs is maybe more effective than the effect of their administrations individually on the recovery of damaged ovaries following the chemotherapy with cyclophosphamide in rats. Key words: Apigenin, Bone marrow stromal cells, Chemotherapy, Ovary, Regeneration.
Cell transplantation for the treatment of spinal cord injury- bone marrow stromal cells and choroid plexus epithelial cells
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimu- late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.
Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage
The reorganization of brain structures after intracerebral hemorrhage (ICH) insult is crucial to functional outcome. Although the pattern of neuronal rewiring is well-documented after ischemic stroke, the study of brain plasticity after ICH has been focusing on the enhancement of dendritic complexity. Here we hypothesized that functional restoration after ICH involves brain reorganization which may be favorably modulated by stem cell transplantation. In this study, bone marrow stromal cells (BMSCs) were transplanted into the perilesional sites of collagenaseinduced ICH in adult rats one day after ICH injury. Forelimb functional recovery was monitored with modified limb placing and vibrissae-elicited forelimb placement tests. Anterograde and retrograde tracing were used to assess the reorganization of bilateral forelimb areas of the sensorimotor cortex. We found that in rats transplanted with BMSCs after ICH injury, axonal sprouting occurred in the contralateral caudal forelimb area of the cortex, and was significantly higher than in ICH rat models that received only the vehicle (P 0.01). The number of positive neurons in the ipsilateral rostral forelimb area of the cortex of the BMSC group was 1.5- to 4.5-fold greater than in the vehicle group (P 0.05). No difference was found between the BMSC and vehicle groups in hemispheric atrophy or labeled neurons in the ipsilateral caudal forelimb area (P
Adipose Tissue‐Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity Than Their Bone Marrow‐Derived Counterparts
Adipose tissue‐derived multipotent stromal cells (AT‐MSCs) are studied as an alternative to bone marrow‐derived multipotent stromal cells (BM‐MSCs) for immunomodulatory treatment. In this study, we systematically compared the immunomodulatory capacities of BM‐MSCs and AT‐MSCs derived from age‐matched donors. We found that BM‐MSCs and AT‐MSCs share a similar immunophenotype and capacity for in vitro multilineage differentiation. BM‐MSCs and AT‐MSCs showed comparable immunomodulatory effects as they were both able to suppress proliferation of stimulated peripheral blood mononuclear cells and to inhibit differentiation of monocyte‐derived immature dendritic cells. However, at equal cell numbers, the AT‐MSCs showed more potent immunomodulatory effects in both assays as compared with BM‐MSCs. Moreover, AT‐MSCs showed a higher level of secretion of cytokines that have been implicated in the immunomodulatory modes of action of multipotent stromal cells, such as interleukin‐6 and transforming growth factor‐β1. This is correlated with higher metabolic activity of AT‐MSCs compared with BM‐MSCs. We conclude that the immunomodulatory capacities of BM‐MSCs and AT‐MSCs are similar, but that differences in cytokine secretion cause AT‐MSCs to have more potent immunomodulatory effects than BM‐MSCs. Therefore, lower numbers of AT‐MSCs evoke the same level of immunomodulation. These data indicate that AT‐MSCs can be considered as a good alternative to BM‐MSCs for immunomodulatory therapy. This study systematically compared the immunomodulatory capacities of adipose tissue‐derived multipotent stromal cells (AT‐MSCs) and bone marrow‐derived multipotent stromal cells (BM‐MSCs) derived from age‐matched donors. It was found that BM‐MSCs and AT‐MSCs show functionally similar immunomodulatory effects, but with a different dose‐response curve, in favor of AT‐MSCs. AT‐MSCs can be considered as a good alternative to BM‐MSCs for immunomodulatory therapy.
Possible Mechanism of Therapeutic Effect of 3-Methyl-1-phenyl-2-pyrazolin-5-one and Bone Marrow Stromal Cells Combination Treatment in Rat Ischemic Stroke Model
Background: The functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke. Methods: Rat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/ group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome. Results: MCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72 , P < 0.01) and the improvement of foot-fault (r = 0.70, P < 0.01). Conclusion: MCI-186 might promote BMSCs migration to the ischemic brain, amplify the neurogenesis, and improve the effects of cell therapy.
A Clinical Study of Alveolar Bone Tissue Engineering Using Autologous Bone Marrow Stromal Cells: Effect of Optimized Cell-Processing Protocol on Efficacy
(1) Objectives: The effect of cell-processing protocols on the clinical efficacy of bone tissue engineering is not well-known. To maximize efficacy, we optimized the cell-processing protocol for bone-marrow-derived mesenchymal stromal cells for bone tissue engineering. In this study, the efficacy of bone tissue engineering using this modified protocol was compared to that of the original protocol. (2) Materials and Methods: This single-arm clinical study included 15 patients. Cells were obtained from bone marrow aspirates and expanded in culture flasks containing basic fibroblast growth factor. The cells were seeded onto β-tricalcium phosphate granules and induced into osteogenic cells for two weeks. Then, the cell–scaffold composites were transplanted into patients with severe atrophic alveolar bone. Radiographic evaluations and bone biopsies were performed. The results were compared with those of a previous clinical study that used the original protocol. (3) Results: Panoramic X-ray and computed tomography showed bone regeneration at the transplantation site in all cases. The average bone area in the biopsy samples at 4 months was 44.0%, which was comparable to that in a previous clinical study at 6 months (41.9%) but with much less deviation. No side effects related to cell transplantation were observed. In regenerated bone, 100% of the implants were integrated. (4) Conclusions: Compared to the original protocol, the non-inferiority of this protocol was proven. The introduction of an optimized cell-processing protocol resulted in a comparable quality of regenerated bone, with less fluctuation. Optimized cell-processing protocols may contribute to stable bone regeneration.
BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats
Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro . The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.