Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,589
result(s) for
"cecum"
Sort by:
Single-cell transcriptomic atlas of the chicken cecum reveals cellular responses and state shifts during Eimeria tenella infection
by
Liu, Bo-Gong
,
Lin, Bing-Jin
,
Guo, Song-Chang
in
Analysis
,
Animal Genetics and Genomics
,
Animals
2025
Eimeria tenella
(
E. tenella
) infection is a major cause of coccidiosis in chickens, leading to significant economic losses in the poultry industry due to its impact on the cecum. This study presents a comprehensive single-cell atlas of the chicken cecal epithelium by generating 7,394 cells using 10X Genomics single-cell RNA sequencing (scRNA-seq). We identified 13 distinct cell types, including key immune and epithelial populations, and characterized their gene expression profiles and cell–cell communication networks. Integration of this single-cell data with bulk RNA-seq data from
E. tenella
-infected chickens revealed significant alterations in cell type composition and state, particularly a marked decrease in
APOB
+
enterocytes and an increase in cycling T cells during infection. Trajectory analysis of
APOB
+
enterocytes uncovered shifts toward cellular states associated with cell death and a reduction in those linked to mitochondrial and cytoplasmic protection when infected with
E. tenella
. These findings highlight the substantial impact of
E. tenella
on epithelial integrity and immune responses, emphasizing the parasite’s role in disrupting nutrient absorption and energy metabolism. Our single-cell atlas serves as a critical resource for understanding the cellular architecture of the chicken cecum and provides a valuable framework for future investigations into cecal diseases and metabolic functions, with potential applications in enhancing poultry health and productivity.
Journal Article
In Vivo Characterization of Neutrophil Extracellular Traps in Various Organs of a Murine Sepsis Model
2014
Neutrophil extracellular traps (NETs) represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. NETs were classified as two distinct forms; cell-free NETs that were released away from neutrophils and anchored NETs that were anchored to neutrophils. Circulating cell-free NETs were characterized as fragmented or cotton-like structures, while anchored NETs were characterized as linear, reticular, membranous, or spot-like structures. In septic mice, both anchored and cell-free NETs were significantly increased in postcapillary venules of the cecum and hepatic sinusoids with increased leukocyte-endothelial interactions. NETs were also observed in both alveolar space and pulmonary capillaries of the lung. The interactions of NETs with platelet aggregates, leukocyte-platelet aggregates or vascular endothelium of arterioles and venules were observed in the microcirculation of septic mice. Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis.
Journal Article
Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity
2020
Microfold cells (M cells) are responsible for antigen uptake to initiate immune responses in the gut-associated lymphoid tissue (GALT). Receptor activator of nuclear factor-κB ligand (RANKL) is essential for M cell differentiation. Follicle-associated epithelium (FAE) covers the GALT and is continuously exposed to RANKL from stromal cells underneath the FAE, yet only a subset of FAE cells undergoes differentiation into M cells. Here, we show that M cells express osteoprotegerin (OPG), a soluble inhibitor of RANKL, which suppresses the differentiation of adjacent FAE cells into M cells. Notably, OPG deficiency increases M cell number in the GALT and enhances commensal bacterium-specific immunoglobulin production, resulting in the amelioration of disease symptoms in mice with experimental colitis. By contrast, OPG-deficient mice are highly susceptible to
Salmonella
infection. Thus, OPG-dependent self-regulation of M cell differentiation is essential for the balance between the infectious risk and the ability to perform immunosurveillance at the mucosal surface.
Microfold cells (M cells) sit at the gut epithelial surface to sample antigens and maintain local immune homeostasis. Here the authors show that M cells are feedback-regulated by M cell-originated osteoprotegerin (OPG) to suppress RNAKL-induced M cell differentiation, and that OPG deficiency alters both gut colitis and infection phenotypes.
Journal Article
Effects of N-Carbamylglutamate supplementation on cecal morphology, microbiota composition, and short-chain fatty acids contents of broiler breeder roosters
2025
The objective of this study was to assess the effects of N-Carbamylglutamate (NCG) supplementation on cecal morphology, microbiota composition, and short-chain fatty acids (SCFAs) contents in broiler breeder roosters. A total of 72 11-week-old Zhuanghe Dagu broiler breeder roosters with a similar initial body weight (1.53 ± 0.06 kg) were randomly allocated into two groups. Each group had 3 replicates with 12 birds per replicate. The experimental period lasted 42 days. All birds underwent the same production practices, except for the dietary conditions. It was found that an increase in cecal muscularis thickness and villi epithelium thickness. The NCG supplementation was found to have regulatory effects on the composition of cecal microbiota. Additionally, the study observed an increase in the content of butyric acid in the cecum of broiler breeder roosters fed with the NCG-containing control diet compared to those fed with the basal diet. Spearman correlation analysis showed that the variation of cecal microbiota was closely related to the production of butyric acid as well as the improvement of muscularis and villi epithelium thickness in cecum. The increase of butyric acid content in cecum was positively correlated with the improvement of cecal muscularis and villi epithelium thickness. In conclusion, the findings of this study indicate that dietary supplementation of NCG in broiler breeder roosters can positively influence cecal morphology, microbiota composition, and butyric production.
Journal Article
A New Cecal Slurry Preparation Protocol with Improved Long-Term Reproducibility for Animal Models of Sepsis
2014
Sepsis, a life-threatening systemic inflammatory response syndrome induced by infection, is widely studied using laboratory animal models. While cecal-ligation and puncture (CLP) is considered the gold standard model for sepsis research, it may not be preferable for experiments comparing animals of different size or under different dietary regimens. By comparing cecum size, shape, and cecal content characteristics in mice under different experimental conditions (aging, diabetes, pancreatitis), we show that cecum variability could be problematic for some CLP experiments. The cecal slurry (CS) injection model, in which the cecal contents of a laboratory animal are injected intraperitoneally to other animals, is an alternative method for inducing polymicrobial sepsis; however, the CS must be freshly prepared under conventional protocols, which is a major disadvantage with respect to reproducibility and convenience. The objective of this study was to develop an improved CS preparation protocol that allows for long-term storage of CS with reproducible results. Using our new CS preparation protocol we found that bacterial viability is maintained for at least 6 months when the CS is prepared in 15% glycerol-PBS and stored at -80°C. To test sepsis-inducing efficacy of stored CS stocks, various amounts of CS were injected to young (4-6 months old), middle-aged (12-14 months old), and aged (24-26 months old) male C57BL/6 mice. Dose- and age-dependent mortality was observed with high reproducibility. Circulating bacteria levels strongly correlated with mortality suggesting an infection-mediated death. Further, injection with heat-inactivated CS resulted in acute hypothermia without mortality, indicating that CS-mediated death is not due to endotoxic shock. This new CS preparation protocol results in CS stocks which are durable for freezing preservation without loss of bacterial viability, allowing experiments to be performed more conveniently and with higher reproducibility than before.
Journal Article
Metformin attenuates sepsis-induced neuronal injury and cognitive impairment
2021
Background
Sepsis is considered to be a high-risk factor for cognitive impairment in the brain. The purpose of our study is to explore whether sepsis causes cognitive impairment and try to evaluate the underlying mechanisms and intervention measures.
Methods
Here, we used cecum ligation and puncture (CLP) to simulate sepsis. Open field, Novel Objective Recognition, and Morris Water Maze Test were used to detect cognitive function, long-term potentiation was used to assess of synaptic plasticity, and molecular biological technics were used to assess synaptic proteins, ELISA kits were used to detect inflammatory factors. Metformin was injected into the lateral ventricle of SD rats, and we evaluated whether metformin alleviated CLP-mediated cognitive impairment using behavioral, electrophysiological and molecular biological technology experiments.
Results
Here we report hippocampal-dependent cognitive deficits and synaptic dysfunction induced by the CLP, accompanied by a significant increase in inflammatory factors. At the same time, metformin was able to improve cognitive impairment induced by CLP in adult male rats.
Conclusion
These findings highlight a novel pathogenic mechanism of sepsis-related cognitive impairment through activation of inflammatory factors, and these are blocked by metformin to attenuate sepsis-induced neuronal injury and cognitive impairment.
Journal Article
Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens
by
Kim, Yun-Gi
,
Pickard, Joseph M.
,
Wang, Thomas D.
in
Adaptor Proteins, Vesicular Transport - genetics
,
Adults
,
Animal models
2017
The high susceptibility of neonates to infections has been assumed to be due to immaturity of the immune system, but the mechanism remains unclear. By colonizing adult germ-free mice with the cecal contents of neonatal and adult mice, we show that the neonatal microbiota is unable to prevent colonization by two bacterial pathogens that cause mortality in neonates. The lack of colonization resistance occurred when Clostridiales were absent in the neonatal microbiota. Administration of Clostridiales, but not Bacteroidales, protected neonatal mice from pathogen infection and abrogated intestinal pathology upon pathogen challenge. Depletion of Clostridiales also abolished colonization resistance in adult mice. The neonatal bacteria enhanced the ability of protective Clostridiales to colonize the gut.
Journal Article
HLA-B27 and Human β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats
by
Lee, Aaron Y.
,
Lauber, Christian L.
,
Debelius, Justine W.
in
Abundance
,
Animals
,
Ankylosing spondylitis
2014
The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.
Journal Article
The microbiota–gut–brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii)
2019
Gut microbiota play a critical role in orchestrating metabolic homeostasis of the host. However, the crosstalk between host and microbial symbionts in small mammals are rarely illustrated. We used male Brandt’s voles (
Lasiopodomys brandtii
) to test the hypothesis that gut microbiota and host neurotransmitters, such as norepinephrine (NE), interact to regulate energetics and thermogenesis during cold acclimation. We found that increases in food intake and thermogenesis were associated with increased monoamine neurotransmitters, ghrelin, short-chain fatty acids, and altered cecal microbiota during cold acclimation. Further, our pair-fed study showed that cold temperature can alter the cecal microbiota independently of overfeeding. Using cecal microbiota transplant along with β3-adrenoceptor antagonism and PKA inhibition, we confirmed that transplant of cold-acclimated microbiota increased thermogenesis through activation of cAMP–PKA–pCREB signaling. In addition, NE manipulation induced a long-term alteration in gut microbiota structure. These data demonstrate that gut microbiota-NE crosstalk via cAMP signaling regulates energetics and thermogenesis during cold acclimation in male Brandt’s voles.
Journal Article
Comprehensive comparison of three different animal models for systemic inflammation
2017
Background
To mimic systemic inflammation in humans, different animal models have been developed. Since these models are still discussed controversially, we aimed to comparatively evaluate the most widely used models with respect to the systemic effects, the influence on organ functions and to the underlying pathophysiological processes.
Methods
Systemic inflammation was induced in C57BL/6N mice with lipopolysaccharide (LPS) treatment, peritoneal contamination and infection (PCI), or cecal ligation and puncture (CLP). Blood glucose and circulating cytokine levels were evaluated at 0, 2, 4, 6, 12, 24, 48, and 72 h after induction of inflammation. Additionally, oxidative stress in various organs and liver biotransformation capacity were determined. Markers for oxidative stress, apoptosis, infiltrating immune cells, as well as cytokine expression patterns, were assessed in liver and spleen tissue by immunohistochemistry.
Results
Treating mice with LPS and PCI induced a very similar course of inflammation; however, LPS treatment elicited a stronger response. In both models, serum pro-inflammatory cytokine levels rapidly increased whereas blood glucose decreased. Organs showed early signs of oxidative stress, and apoptosis was increased in splenic cells. In addition, liver biotransformation capacity was reduced and there was pronounced immune cell infiltration in both the liver and spleen. Mice exposed to either LPS or PCI recovered after 72 h. In contrast, CLP treatment induced comparatively fewer effects, but a more protracted course of inflammation.
Conclusions
The LPS model of systemic inflammation revealed to be most suitable when being interested in the impact of new therapies for acute inflammation. When using the CLP model to mimic human sepsis more closely, a longer time course should be employed, as the treatment induces delayed development of systemic inflammation.
Journal Article