Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
108,058 result(s) for "coding"
Sort by:
A Highly Pipelined and Highly Parallel VLSI Architecture of CABAC Encoder for UHDTV Applications
Recently, specifically designed video codecs have been preferred due to the expansion of video data in Internet of Things (IoT) devices. Context Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding module widely used in recent video coding standards such as HEVC/H.265 and VVC/H.266. CABAC is a well known throughput bottleneck due to its strong data dependencies. Because the required context model of the current bin often depends on the results of the previous bin, the context model cannot be prefetched early enough and then results in pipeline stalls. To solve this problem, we propose a prediction-based context model prefetching strategy, effectively eliminating the clock consumption of the contextual model for accessing data in memory. Moreover, we offer multi-result context model update (MCMU) to reduce the critical path delay of context model updates in multi-bin/clock architecture. Furthermore, we apply pre-range update and pre-renormalize techniques to reduce the multiplex BAE’s route delay due to the incomplete reliance on the encoding process. Moreover, to further speed up the processing, we propose to process four regular and several bypass bins in parallel with a variable bypass bin incorporation (VBBI) technique. Finally, a quad-loop cache is developed to improve the compatibility of data interactions between the entropy encoder and other video encoder modules. As a result, the pipeline architecture based on the context model prefetching strategy can remove up to 45.66% of the coding time due to stalls of the regular bin, and the parallel architecture can also save 29.25% of the coding time due to model update on average under the condition that the Quantization Parameter (QP) is equal to 22. At the same time, the throughput of our proposed parallel architecture can reach 2191 Mbin/s, which is sufficient to meet the requirements of 8 K Ultra High Definition Television (UHDTV). Additionally, the hardware efficiency (Mbins/s per k gates) of the proposed architecture is higher than that of existing advanced pipeline and parallel architectures.
Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
Various hypotheses of information representation in brain, referred to as neural codes, have been proposed to explain the information transmission between neurons. Neural coding plays an essential role in enabling the brain-inspired spiking neural networks (SNNs) to perform different tasks. To search for the best coding scheme, we performed an extensive comparative study on the impact and performance of four important neural coding schemes, namely, rate coding, time-to-first spike (TTFS) coding, phase coding, and burst coding. The comparative study was carried out using a biological 2-layer SNN trained with an unsupervised spike-timing-dependent plasticity (STDP) algorithm. Various aspects of network performance were considered, including classification accuracy, processing latency, synaptic operations (SOPs), hardware implementation, network compression efficacy, input and synaptic noise resilience, and synaptic fault tolerance. The classification tasks on Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST datasets were applied in our study. For hardware implementation, area and power consumption were estimated for these coding schemes, and the network compression efficacy was analyzed using pruning and quantization techniques. Different types of input noise and noise variations in the datasets were considered and applied. Furthermore, the robustness of each coding scheme to the non-ideality-induced synaptic noise and fault in analog neuromorphic systems was studied and compared. Our results show that TTFS coding is the best choice in achieving the highest computational performance with very low hardware implementation overhead. TTFS coding requires 4x/7.5x lower processing latency and 3.5x/6.5x fewer SOPs than rate coding during the training/inference process. Phase coding is the most resilient scheme to input noise. Burst coding offers the highest network compression efficacy and the best overall robustness to hardware non-idealities for both training and inference processes. The study presented in this paper reveals the design space created by the choice of each coding scheme, allowing designers to frame each scheme in terms of its strength and weakness given a designs’ constraints and considerations in neuromorphic systems.
A coding mission
\"When you have a problem, where can you go for answers? The library! When Codie and her friends join Ms. Gillian, the Specialist, on another Adventure in Makerspace, they find themselves lost in a maze, with a monster just around the corner! Can they code their way out? Join them to complete Mission: Coding! This graphic novel includes fun bonus features such as a theme song and author interview available through the free Capstone 4D app. A great way to add augmented reality to your reading experience!\"-- Provided by publisher.
RETRACTED ARTICLE: Various transmission codes for the control of bit error rate in both optical wired and wireless communication channels
This study clarifies the data error rates optimization for OFC/OWC channels based on different transmission codes. These codes that are namely multi bits/symbol digital pulse interval modulation (DPIM), multi bits/symbol pulse position modulation (PPM), nonreturn to zero inverted (NRZI), 4 bit data symbol/5 bit code (4B5B), and Manchester for upgrading optical wired/wireless communication systems. The optical power through OFC/OWC channels, S/N ratio, the output power at the receiver side are stimulated with high bit transmission rates. The effects of coding complexity on the -factor, BER, optical power, and electrical received power are also stimulated using both DPIM and PPM coding.
Correction: Chromosomal and Plasmid-Encoded Factors of Shigella flexneri Induce Secretogenic Activity Ex Vivo
Christina S. Faherty Citation: Faherty CS, Harper JM, Shea-Donohue T, Barry EM, Kaper JB, Fasano A, et al. (2013) Correction: Chromosomal and Plasmid-Encoded Factors of Shigella flexneri Induce Secretogenic Activity Ex Vivo.