Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,392 result(s) for "computational fluid dynamics (CFD)"
Sort by:
Dynamic Response Analysis of Tilting Pad Journal Bearing Considering Fluid-Structure Interaction
The transient hydrodynamic lubrication model of tilting pad journal bearings (TPJBs) was established by the computational fluid dynamics (CFD) method and the self-developed dynamic grid program. The fluid-structure interaction between the flow field and the rotor motion, the pads rotations was realized. The feasibility of the model is proved by comparing with the experimental data. The dynamic response of TPJBs under the various unbalance, the loading modes and the rotating speeds was studied. The dynamic response of TPJBs is further analyzed through a research of the relationships among the shaft whirl orbits, transient force acting on the shaft, rotation angles of the pads and transient oil film force of the pads. With the increase of unbalance, the whirl orbits expand and whirl orbits centers rise continuously. The whirl orbits and orbit center attitude angles of TPJBs are smaller than those of fixed-pad journal bearings. Compare with the load between pads, the whirl orbits are smaller and whirl orbits centers drop slightly under the load on pads. With the increase of rotating speed, the whirl orbits expand nonlinearly, whirl orbit center rises nonlinearly. The transient force acting on the shaft, the rotation angles of the pads and the transient oil film force of the pads change periodically, and the period and frequency of these changes are the same as that of the shaft rotation. The maximum force acting on the shaft appear before the maximum shaft center position (the vertexes of the whirl orbit).
Experimental analysis and computational simulation of heat transfer in a radiator
This study analyzes the thermal performance of a 4.1 dm³ engine radiator through experimental tests and CFD simulations using ANSYS Fluent. The effects of materials, tube geometry, and flow conditions on heat transfer and thermal efficiency were evaluated. The results show that copper tubes enhance heat transfer by 18% but increase pressure drop by 4.44%. Additionally, increasing air velocity improves thermal efficiency by 3.74%, suggesting that specific improvements in fin design could enhance performance without increasing energy consumption. The study validates the use of CFD as a reliable tool for analyzing cooling systems in engines, benefiting the automotive industry with more efficient radiators. These improvements can be extended to hybrid and electric vehicles, as well as industrial heat exchangers, contributing to more sustainable thermal management. The main scientific contributions of this work are: (i) the experimental validation of a CFD model applied to an automotive radiator under transitional flow regime, (ii) the quantitative evaluation of the effects of copper tubes on thermal efficiency and pressure drop, and (iii) the detailed analysis of air velocity impact on heat transfer and its implications for radiator thermal design. Este estudio analiza el rendimiento térmico de un radiador de motor de 4.1 dm³ mediante pruebas experimentales y simulaciones CFD en ANSYS Fluent. Se evaluaron los efectos de materiales, geometría de tubos y condiciones de flujo en la transferencia de calor y eficiencia térmica. Los resultados muestran que los tubos de cobre mejoran la transferencia de calor en un 18%, pero aumentan la caída de presión en un 4.44%. Además, incrementar la velocidad del aire mejora la eficiencia térmica en un 3.74%, lo que sugiere que ciertas mejoras en el diseño de las aletas podrían aumentar el desempeño sin afectar el consumo energético. El estudio valida el uso de CFD como herramienta confiable para el análisis de sistemas de enfriamiento en motores, beneficiando a la industria automotriz con radiadores más eficientes. Estas mejoras pueden extenderse a vehículos híbridos y eléctricos, así como a intercambiadores de calor industriales, contribuyendo a una gestión térmica más sostenible. Las principales contribuciones científicas de este trabajo son: (i) la validación experimental de un modelo CFD aplicado a un radiador automotriz en régimen de flujo transitorio, (ii) la evaluación cuantitativa del efecto de los tubos de cobre sobre la eficiencia térmica y la caída de presión, y (iii) el análisis detallado del impacto de la velocidad del aire en la transferencia de calor y sus implicaciones en el diseño térmico del radiador.
Aerodynamic Investigation of a Horizontal Axis Wind Turbine with Split Winglet Using Computational Fluid Dynamics
Wind energy is one of the fastest growing renewable energy sources, and the most developed energy extraction device that harnesses this energy is the Horizontal Axis Wind Turbine (HAWT). Increasing the efficiency of HAWTs is one important topic in current research with multiple aspects to look at such as blade design and rotor array optimization. This study looked at the effect of wingtip devices, a split winglet, in particular, to reduce the drag induced by the wind vortices at the blade tip, hence increasing performance. Split winglet implementation was done using computational fluid dynamics (CFD) on the National Renewable Energy Lab (NREL) Phase VI sequence H. In total, there are four (4) blade configurations that are simulated, the base NREL Phase VI sequence H blade, an extended version of the previous blade to equalize length of the blades, the base blade with a winglet and the base blade with split winglet. Results at wind speeds of 7 m/s to 15 m/s show that adding a winglet increased the power generation, on an average, by 1.23%, whereas adding a split winglet increased it by 2.53% in comparison to the extended blade. The study also shows that the increase is achieved by reducing the drag at the blade tip and because of the fact that the winglet and split winglet generating lift themselves. This, however, comes at a cost, i.e., an increase in thrust of 0.83% and 2.05% for the blades with winglet and split winglet, respectively, in comparison to the extended blade.
Modeling of Erosion Wear of Sand Water Slurry Flow through Pipe Bend using CFD
In the present study, erosion wear of a 90o pipe bend has been investigated using the Computational fluid dynamics code FLUENT. Solid particles were tracked to evaluate the erosion rate along with k-ɛ turbulent model for continuous/fluid phase flow field. Spherical shaped sand particles of size 183 µm and 277 µm of density 2631 kg/m3 are injected from the inlet surface at velocity ranging from 0.5 to 8 ms-1 at two different concentrations. By considering the interaction between solid-liquid, effect of velocity, particle size and concentration were studied. Erosion wear was increased exponential with velocity, particles size and concentrations. Predicted results with CFD have revealed well in agreement with experimental results. The magnitude and location of maximum erosion wear were more severe in bend rather than the straight pipe.
A Large-Eddy Simulation-Based Assessment of the Risk of Wind Turbine Failures Due to Terrain-Induced Turbulence over a Wind Farm in Complex Terrain
The first part of the present study investigated the relationship among the number of yaw gear and motor failures and turbulence intensity (TI) at all the wind turbines under investigation with the use of in situ data. The investigation revealed that wind turbine #7 (T7), which experienced a large number of failures, was affected by terrain-induced turbulence with TI that exceeded the TI presumed for the wind turbine design class to which T7 belongs. Subsequently, a computational fluid dynamics (CFD) simulation was performed to examine if the abovementioned observed wind flow characteristics could be successfully simulated. The CFD software package that was used in the present study was RIAM-COMPACT, which was developed by the first author of the present paper. RIAM-COMPACT is a nonlinear, unsteady wind prediction model that uses large-eddy simulation (LES) for the turbulence model. RIAM-COMPACT is capable of simulating flow collision, separation, and reattachment and also various unsteady turbulence–eddy phenomena that are caused by flow collision, separation, and reattachment. A close examination of computer animations of the streamwise (x) wind velocity revealed the following findings: As we predicted, wind flow that was separated from a micro-topographical feature (micro-scale terrain undulations) upstream of T7 generated large vortices. These vortices were shed downstream in a nearly periodic manner, which in turn generated terrain-induced turbulence, affecting T7 directly. Finally, the temporal change of the streamwise (x) wind velocity (a non-dimensional quantity) at the hub-height of T7 in the period from 600 to 800 in non-dimensional time was re-scaled in such a way that the average value of the streamwise (x) wind velocity for this period was 8.0 m/s, and the results of the analysis of the re-scaled data were discussed. With the re-scaled full-scale streamwise wind velocity (m/s) data (total number of data points: approximately 50,000; time interval: 0.3 s), the time-averaged streamwise (x) wind velocity and TI were evaluated using a common statistical processing procedure adopted for in situ data. Specifically, 10-min moving averaging (number of sample data points: 1932) was performed on the re-scaled data. Comparisons of the evaluated TI values to the TI values from the normal turbulence model in IEC61400-1 Ed.3 (2005) revealed the following: Although the evaluated TI values were not as large as those observed in situ, some of the evaluated TI values exceeded the values for turbulence class A, suggesting that the influence of terrain-induced turbulence on the wind turbine was well simulated.
Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft
A new type of solar tower was developed through laboratory experiments and numerical analyses. The solar tower mainly consists of three components. The transparent collector area is an aboveground glass roof, with increasing height toward the center. Attached to the center of the inside of the collector is a vertical tower within which a wind turbine is mounted at the lower entry to the tower. When solar radiation heats the ground through the glass roof, ascending warm air is guided to the center and into the tower. A solar tower that can generate electricity using a simple structure that enables easy and less costly maintenance has considerable advantages. However, conversion efficiency from sunshine energy to mechanical turbine energy is very low. Aiming to improve this efficiency, the research project developed a diffuser-type tower instead of a cylindrical tower, and investigated a suitable diffuser shape for practical use. After changing the tower height and diffuser open angle, with a temperature difference between the ambient air aloft and within the collector, various diffuser tower shapes were tested by laboratory experiments and numerical analyses. As a result, it was found that a diffuser tower with a semi-open angle of 4° is an optimal shape, producing the fastest updraft at each temperature difference in both the laboratory experiments and numerical analyses. The relationships between thermal updraft speed and temperature difference and/or tower height were confirmed. It was found that the thermal updraft velocity is proportional to the square root of the tower height and/or temperature difference.
A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential
In this paper, we present a performance-based approach to building configuration design to improve the urban ventilation potential at the conceptual design stage, and we demonstrate its application through a case study. The target performance optimized was the ventilation potential of a district, including a region of interest at a spatial scale of hundreds of meters. To estimate this performance, we used computational fluid dynamics (CFD), coupled with an evolutionary algorithm, to optimize the design alternatives to produce the building configuration most suitable for a given set of site conditions. Three calculation components must be assembled for a CFD-based design optimization: an optimizer, a geometry/mesh generator, and a CFD solver. To provide links between the calculation components, we utilized an in-house parametric design program. A case study was conducted to test the applicability of the proposed design method to identify the optimal solutions that minimize adverse effects on the ventilation potential of the surrounding area. For a configuration of buildings in a dense urban area, the proposed design method successfully improved the design alternatives. The results show that the urban ventilation potential in the case of the optimized building configuration is 16% greater than that of the initial building configuration.
The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model
The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.
Computational Fluid Dynamic Analysis of Co-Firing of Palm Kernel Shell and Coal
The increasing global demand for palm oil and its products has led to a significant growth in palm plantations and palm oil production. Unfortunately, these bring serious environmental problems, largely because of the large amounts of waste material produced, including palm kernel shell (PKS). In this study, we used computational fluid dynamics (CFD) to investigate the PKS co-firing of a 300 MWe pulverized coal-fired power plant in terms of thermal behavior of the plant and the CO2, CO, O2, NOx, and SOx produced. Five different PKS mass fractions were evaluated: 0%, 10%, 15%, 25%, and 50%. The results suggest that PKS co-firing is favorable in terms of both thermal behavior and exhaust gas emissions. A PKS mass fraction of 25% showed the best combustion characteristics in terms of temperature and the production of CO2, CO, and SOx. However, relatively large amounts of thermal NOx were produced by high temperature oxidation. Considering all these factors, PKS mass fractions of 10%–15% emerged as the most appropriate co-firing condition. The PKS supply capacity of the palm mills surrounding the power plants is a further parameter to be considered when setting the fuel mix.
Improving Prediction Accuracy Concerning the Thermal Environment of a Data Center by Using Design of Experiments
In data centers, heating, ventilation, and air-conditioning (HVAC) consumes 30–40% of total energy consumption. Of that portion, 26% is attributed to fan power, the ventilation efficiency of which should thus be improved. As an alternative method for experimentations, computational fluid dynamics (CFD) is used. In this study, “parameter tuning”—which aims to improve the prediction accuracy of CFD simulation—is implemented by using the method known as “design of experiments”. Moreover, it is attempted to improve the thermal environment by using a CFD model after parameter tuning. As a result of the parameter tuning, the difference between the result of experimental-measurement results and simulation results for average inlet temperature of information-technology equipment (ITE) installed in the ventilation room of a test data center was within 0.2 °C at maximum. After tuning, the CFD model was used to verify the effect of advanced insulation such as raised-floor fixed panels and show the possibility of reducing fan power by 26% while keeping the recirculation ratio constant. Improving heat-insulation performance is a different approach from the conventional approach (namely, segregating cold/hot airflow) to improving ventilation efficiency, and it is a possible solution to deal with excessive heat generated in data centers.