Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "crisscross grey wolf optimizer"
Sort by:
A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism
Accurate short-term load forecasting is of great significance to the safe and stable operation of power systems and the development of the power market. Most existing studies apply deep learning models to make predictions considering only one feature or temporal relationship in load time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the input side of the model to improve the sensitivity of the model to key features and information at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical crossover operators, to enhance the global search ability and the diversity of the population of GWO. Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a collected load dataset, four evaluation metrics and parametric and non-parametric testing manners are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37% and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that the proposed model can better fit the load data and achieve better prediction results.
A hybrid grey wolf optimizer for engineering design problems
Grey wolf optimizer (GWO) is one of the most popular metaheuristics, and it has been presented as highly competitive with other comparison methods. However, the basic GWO needs some improvement, such as premature convergence and imbalance between exploitation and exploration. To address these weaknesses, this paper develops a hybrid grey wolf optimizer (HGWO), which combines the Halton sequence, dimension learning-based, crisscross strategy, and Cauchy mutation strategy. Firstly, the Halton sequence is used to enlarge the search scope and improve the diversity of the solutions. Then, the dimension learning-based is used for position update to balance exploitation and exploration. Furthermore, the crisscross strategy is introduced to enhance convergence precision. Finally, the Cauchy mutation strategy is adapted to avoid falling into the local optimum. The effectiveness of HGWO is demonstrated by comparing it with advanced algorithms on the 15 benchmark functions in different dimensions. The results illustrate that HGWO outperforms other advanced algorithms. Moreover, HGWO is used to solve eight real-world engineering problems, and the results demonstrate that HGWO is superior to different advanced algorithms.