MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A hybrid grey wolf optimizer for engineering design problems
A hybrid grey wolf optimizer for engineering design problems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A hybrid grey wolf optimizer for engineering design problems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A hybrid grey wolf optimizer for engineering design problems
A hybrid grey wolf optimizer for engineering design problems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A hybrid grey wolf optimizer for engineering design problems
A hybrid grey wolf optimizer for engineering design problems
Journal Article

A hybrid grey wolf optimizer for engineering design problems

2024
Request Book From Autostore and Choose the Collection Method
Overview
Grey wolf optimizer (GWO) is one of the most popular metaheuristics, and it has been presented as highly competitive with other comparison methods. However, the basic GWO needs some improvement, such as premature convergence and imbalance between exploitation and exploration. To address these weaknesses, this paper develops a hybrid grey wolf optimizer (HGWO), which combines the Halton sequence, dimension learning-based, crisscross strategy, and Cauchy mutation strategy. Firstly, the Halton sequence is used to enlarge the search scope and improve the diversity of the solutions. Then, the dimension learning-based is used for position update to balance exploitation and exploration. Furthermore, the crisscross strategy is introduced to enhance convergence precision. Finally, the Cauchy mutation strategy is adapted to avoid falling into the local optimum. The effectiveness of HGWO is demonstrated by comparing it with advanced algorithms on the 15 benchmark functions in different dimensions. The results illustrate that HGWO outperforms other advanced algorithms. Moreover, HGWO is used to solve eight real-world engineering problems, and the results demonstrate that HGWO is superior to different advanced algorithms.