Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "dye-doped"
Sort by:
Improving Measurement Range of a Swellable Polymer-Clad Plastic Fiber Optic Humidity Sensor by Dye Addition
Humidity measurement is required in various fields. We previously developed a sensor that leverages the sudden change in the transmitted light intensity when switching from leakage mode to waveguide mode. By adjusting the low-refractive-index polymer of the cladding, we achieved measurements at 60% RH. However, for practical use, measurements at low humidity are essential. Therefore, in this study, we developed a sensor using a leakage mode that enables measurements at low humidity. To measure the leakage mode, it is necessary to increase the absorbance of the cladding and the incident angle at the core–cladding interface. Therefore, we developed a sensor in which the core was stretched, and the cladding was doped with a high concentration of dye. The experimental results confirmed that a sensor with a polymer concentration of 4% and a dye concentration of 3% could measure from 0% RH to 95% RH. The sensitivity was 0.1 dB/% RH from 0% RH to 70% RH and 0.32 dB/% RH from 70% RH to 95% RH. The estimated response time for a change from 10% to 90% light transmission for a sensor with 4% polymer concentration and 0.5% dye concentration was 22 s from 45% RH to 0% RH and 50 s from 0% RH to 45% RH.
Effect of Host Structure on Optical Freedericksz Transition in Dye-Doped Liquid Crystals
The optical Freedericksz transition (OFT) can reversibly control the molecular orientation of liquid crystals (LCs) only by light irradiation, leading to the development of all-optical devices, such as smart windows. In particular, oligothiophene-doped LCs show the highly sensitive OFT due to the interaction between dyes and an optical-electric field. However, the sensitivity is still low for the application to optical devices. It is necessary to understand the factors in LCs affecting the OFT behavior to reduce the sensitivity. In this study, we investigated the effect of the host LC structure on the OFT in oligothiophene-doped LCs. The threshold light intensity for the OFT in trifluorinated LCs was 42% lower than that in LCs without fluorine substituents. This result contributes to the material design for the low-threshold optical devices utilizing the OFT of dye-doped LCs.
From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers
Dye-doped polymer films of Poly(methyl methacrylate) PMMA have been prepared with the use of the conventional solution cast technique. Natural dye has been extracted from environmentally friendly material of green tea (GT) leaves. Obvious Fourier transform infrared (FTIR) spectra for the GT extract were observed, showing absorption bands at 3401 cm−1, 1628 cm−1, and 1029 cm−1, corresponding to O–H/N–H, C=O, and C–O groups, respectively. The shift and decrease in the intensity of the FTIR bands in the doped PMMA sample have been investigated to confirm the complex formation between the GT dye and PMMA polymer. Different types of electronic transition could be seen in the absorption spectra of the dye-doped samples. For the PMMA sample incorporated with 28 mL of GT dye, distinguishable intense peak around 670 nm appeared, which opens new frontiers in the green chemistry field that are particularly suitable for laser technology and optoelectronic applications. The main result of this study showed that the doping of the PMMA polymer with green tea dye exhibited a strong absorption peak around 670 nm in the visible range. The absorption edge was found to be shifted towards the lower photon energy for the doped samples. Optical dielectric loss and Tauc’s model were used to estimate the optical band gaps of the samples and to specify the transition types between the valence band (VB) and conduction band (CB), respectively. A small band gap of around 2.6 eV for the dye-doped PMMA films was observed. From the scientific and engineering viewpoints, this topic has been found to be very important and relevant. The amorphous nature of the doped samples was found and ascribed to the increase of Urbach energy. The Urbach energy has been correlated to the analysis of X-ray diffraction (XRD) to display the structure-properties relationships.
Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides
Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.
Eco-friendly enhancement of optical and structural properties in polyvinyl alcohol films via eggplant peel dye doping
This study presents an eco-friendly strategy to enhance the optical and structural properties of polyvinyl alcohol (PVA) films through doping with eggplant peel dye (EPPD), a natural pigment extracted from agricultural waste via a green aqueous synthesis (~ 33% yield from 30 g of peel). EPPD was uniformly dispersed in PVA films (PVA-D1, PVA-D2, PVA-D3) using an ultrasonic-assisted solution casting technique, with chitosan (CS) added to prevent fungal growth. Comprehensive characterization (Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis), and differential scanning calorimetry (DSC)) confirmed successful integration of EPPD, revealing its polyhydric alcohol content, amorphous nature, and uniform distribution within the polymer matrix. Doping with EPPD significantly reduced the optical band gap from 6.314 eV (pure PVA) to 1.8 eV (PVA-D3), introducing localized states that enhanced light absorption (peaking at 554 nm in PVA-D3), as supported by Tauc’s model (transition type: direct allowed → direct forbidden) and dielectric loss analysis. Additionally, the refractive index increased from 1.165 to 1.27, while the optical dielectric constant (ε₁) improved from 1.366 to 1.609 due to enhanced charge carrier density. XRD analysis revealed a decrease in crystallinity from 30.50% (pure PVA) to 18.11% (PVA-D3), leading to a reduction in the glass transition temperature (from 30.5 °C to 25 °C) and melting temperature (from 240 °C to 194 °C). The Urbach energy (Eu), an indicator of structural disorder, increased from 0.43 eV (pure PVA) to 0.62 eV (PVA-D3), reflecting a higher density of localized states in the amorphous matrix and broader tail states in the band structure. These tunable optoelectronic properties position EPPD-doped PVA films as promising candidates for various applications, including UV-protective textiles, smart packaging, biomedical dressings, and energy-efficient optoelectronic devices.
Dye-Doped Polymeric Microplastics: Light Tools for Bioimaging in Test Organisms
Ecosystems around the world are experiencing a major environmental impact from microplastic particles (MPs 0.1 µm–1 mm). Water, sediments, and aquatic biota show the widespread presence of this pollutant. However, MPs are rarely used in laboratory studies as they are scarcely available for purchase or expensive, especially if one wishes to trace the particle with a dye or fluorescent. Furthermore, existing preparation techniques have limited application in biological studies. In this work, we propose a new, easy, and cheap way to prepare fluorescent MPs. The protocol is based on the osmosis method in order to obtain spherical polymeric particles of P(S-co-MMA), with 0.7–9 micron diameter, made fluorescent because dye-doped with rhodamine B isothiocyanate (RITC) or fluorescein isothiocyanate (FITC). The dye loading was studied and optimized, and the MPs–dye conjugates were characterized by UV-vis FTIR and XPS spectrometry and scanning electron microscopy (SEM). Furthermore, preliminary tests on aquatic organisms demonstrated the possible use of these fluorescent MPs in bioimaging studies, showing their absorption/adsorption by duckweeds (Lemna minuta) and insect larvae (Cataclysta lemnata).
Label-Free, Color-Indicating, Polarizer-Free Dye-Doped Liquid Crystal Microfluidic Polydimethylsiloxane Biosensing Chips for Detecting Albumin
We reveal a novel design for dye-doped liquid crystal (DDLC) microfluidic biosensing chips in the polydimethylsiloxane material. With this design chip, the orientation of DDLCs was affected by the interface between the walls of the channels and DDLCs. When the inside of a channel was coated with an N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) alignment layer, the DDLCs oriented homeotropically in a homeotropic (H) state under cross-polarized microscopy. After immobilization of antigens with antibodies on the alignment layer-coated microchannel walls, the optical intensity of the DDLC change from the dark H state to the bright planar (P) state. Using pressure-driven flow, the binding of antigens/antibodies to the DDLCs could be detected in an experimental sequential order. The microfluidic DDLCs were tested by detecting bovine serum albumin (BSA) and its immune-responses of antigens/antibodies. We proved that this immunoassay chip was able to detect BSA antigens/antibodies pairs with the detection limit about 0.5 µg/mL. The novel DDLC chip was shown to be a simple, multi-detection device, and label-free microfluidic chips are presented.
Mechanisms of the Photomechanical Response in Thin-Film Dye-Doped Glassy Polymers
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating. While photo-isomerization of dopant molecules is commonly observed in dye-doped polymers, the shape changes of a molecule might not couple strongly to the host polymer through steric mechanical interactions, thus not contributing substantially to a macroscopic shape change. To gain insights into the effectiveness of such mechanical coupling, we directly probe the dopant molecules using dichroism measurements simultaneously while measuring the photomechanical response and find mechanical coupling to be small enough to make photothermal heating—mediated by the transfer of optical energy as heat to the polymer—the dominant mechanism. We also predict the fraction of light energy converted to mechanical energy using a model whose parameters are thermodynamic material properties that are measured with independent experiments. We find that in the thin-film geometry, these dye-doped glassy polymers are as efficient as any other material but their large Young’s modulus relative to other organic materials, such as liquid crystal elastomers, makes them suitable in applications that require mechanically strong materials. The mechanical properties and the photomechanical response of thin films are observed to be significantly different than in fibers, suggesting that the geometry of the material and surface effects might play an important role.
Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes
In this paper, dye-doped polymer-dispersed liquid crystalline (DDPDLC) films were prepared with high mechanical properties and low driving voltage by doping different dichroic anthraquinone dyes. The effects of various dye and doping concentrations on microscopic morphology, electro-optical characteristics, and mechanical characteristics were investigated. The optimal doping concentrations of different dyes were also explored. The results show that the addition of all dyes decreased the contrast ratio (CR) and the transmittance and mechanical properties of the polymer-dispersed liquid crystalline (PDLC) films. Similar mechanisms underlie the effects of solvent red 111 and solvent blue 104, which lower the driving voltages of the PDLC films. With the increasing concentration of the dye, the haze of the films first decreased and then increased after the content of the dye reached a certain level. For PDLC films doped with solvent green 28, the driving voltage and haze increased with the increasing content of the dye. According to different influencing factors, the dye content corresponding to the best performance of solvent red 111, solvent green 28 and solvent blue 104 is 0.8 wt%, 2.0 wt% and 0.3 wt%. Electrochromic PDLC films have been prepared based on the research results of dye content. The mechanical properties, electro-optical properties and microstructures of the films have been studied. The results show that the DDPDLC films could change color by tuning the applied voltages. The research provides a theoretical basis for obtaining PDLC films with a wider color gamut and supports the practical application of visible light camouflage technology in the military.
Methyl Orange Doped Sulphamic Acid Single Crystals: Growth, Optical and Thermal Properties for Optoelectronic Applications
The current article is the first to study the influence of an anionic dye on the properties of a single sulphamic acid crystal (SA). By using a slow evaporation method, single crystals of pure and methyl orange (MO)-doped sulphamic acid (MOSA) were synthesized. Powder X-ray diffraction (XRD) was used to investigate the crystalline nature of the grown crystals. The Scherrer method was employed to calculate the crystallite size of both formed crystals and was compared to the W–H method. The presence of several functional groups was confirmed by FTIR spectroscopy. At the site where MO dye was incorporated into the SA lattice, UV–Vis–NIR absorption spectra revealed three different absorption bands. Based on transmittance measurements, different optical constants such as optical band gap (Eg), extinction coefficient (k), refractive index (n) and optical conductivity (σ) were determined for both the samples. The thermal stability and decomposition temperature of doped crystals were found to be substantially enhanced. The doped crystal's increased optical characteristics and thermal stability prove that they are viable for optoelectronic applications.