Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,937 result(s) for "endo-1,4-beta-glucanase"
Sort by:
The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent
ObjectivesThe synergistic effects between cellulases and lytic polysaccharide monooxygenases (LPMOs) were investigated systematically in terms of their degree of synergy (DS) on amorphous and crystalline cellulose. Synergy curves were obtained for enzyme pairs containing a cellulase from Trichoderma reesei (Cel6A and Cel7A) and three LPMOs from Thermoascus aurantiacus (TaAA9A), Lentinus similis (LsAA9A) and Thielavia terrestris (TtAA9E).ResultsThe synergistic experiments showed that the three LPMOs significantly improved the hydrolytic efficiency of Cel6A, on both cellulosic substrates; a more pronounced effect being seen for TtAA9E on amorphous cellulose at low cellulase:LPMO ratios. In contrast, the highly processive, reducing-end acting Cel7A synergised with the C1-C4 oxidising LPMOs, TaAA9A and LsAA9A, but was inhibited by the presence of C1-oxidizing TtAA9E.ConclusionsThe degree of synergy exhibited by the cellulase-LPMO mixtures was enzyme- and substrate-specific. The observed Cel7A inhibition, rather than synergy, by the C1-oxidizing LPMO, TtAA9E, warrants further investigations.
Thermostable enzyme research advances: a bibliometric analysis
Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study’s analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification
Doc number: 175 Abstract Background: Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification. Results: In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX(TM)-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin. Conclusions: Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus
Monascus purpureus, a pigment-producing ascomycetous fungus, has been traditionally used for red rice preparation using solid-state fermentation. The objective of this study was to develop an improved pigment-producing strain of M. purpureus MTCC 1090 through genome shuffling followed by detailed analytical estimations of pigments and other bioactive compounds produced by the fusant. Protoplast formation was optimum with 12 h-old mycelia incubated at 30 °C with cellulase, lyticase, and chitinase (40:1:1) for 5 h. Four UV-induced mutants that produced 13.1–39.5% higher amount of yellow, orange, and red pigments in fermented low-grade (cheap) broken rice were used as parents for genome shuffling. After the first round of fusion, four fusants with 35.9–60.52% higher pigment production capabilities were fused again, and finally the fusant F2-19 with distinct culture characteristic was selected under multi-selection pressure. It consistently produced 67%, 70%, and 76% higher content of yellow, orange, and red pigments respectively as compared to the wild-type. High-performance liquid chromatography (HPLC) analysis also reveals clear variation in pigment productions between wild-type and the fusant. Furthermore, HPLC analysis of F2-19 fermented rice extract confirms the production of 186 ± 8.71 and 3810 ± 29.81 mg/kg mevinolin and gamma-aminobutyric acid respectively. Citrinin was not detected. F2-19 fermented rice also has high antioxidant activity (7.92 ± 0.32 mg/g trolox equivalent), with good amount of phenolics (18.0 ± 0.95 mg/g gallic acid equivalent) and flavonoids (2.7 ± 0.26 mg/g quercetin equivalent). Thus, genome shuffling was successfully implemented on M. purpureus for the first time to develop a citrinin-free, better-performing fusant that holds future biotechnological potential.Key points• Genome shuffling was performed by recursive protoplast fusion in Monascus purpureus.• The selected fusant, F2-19, was used in solid-state fermentation using low-grade rice.• It produced 67–76% higher content of yellow, orange, and red pigments than the wild-type.• HPLC detected 186 mg/kg mevinolin and 3810 mg/kg γ-aminobutyric acid, but no citrinin.• F2-19 shows high antioxidant activity with good amount of phenolics and flavonoids.
Improving Enzymes for Biomass Conversion: A Basic Research Perspective
The cost of enzymes for converting plant biomass materials to fermentable sugars is a major impediment to the development of a practical lignocellulosic ethanol industry. Research on enzyme optimization with the goal of reducing the cost of converting biomass materials such as corn stover into glucose, xylose, and other sugars is being actively pursued in private industry, academia, and government laboratories. Under the auspices of the Department of Energy Great Lakes Bioenergy Research Center, we are taking several approaches to address this problem, including “bioprospecting” for superior key enzymes, protein engineering, and high-level expression in plants. A particular focus is the development of synthetic enzyme mixtures, in order to learn which of the hundreds of known enzymes are important and in what ratios. A core set comprises cellobiohydrolase, endoglucanase, β-glucosidase, endoxylanase, and β-glucosidase. Accessory enzymes include esterases, proteases, nonhydrolytic proteins, and glycosyl hydrolases that cleave the less frequent chemical linkages found in plant cell walls.
Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis
Enzymatic hydrolysis of lignocellulose for bioethanol production shows a great potential to remit the rapid consumption of fossil fuels, given the fact that lignocellulose feedstocks are abundant, cost-efficient, and renewable. Lignin results in low enzymatic saccharification by forming the steric hindrance, non-productive adsorption of cellulase onto lignin, and deactivating the cellulase. In general, the non-productive binding of cellulase on lignin is widely known as the major cause for inhibiting the enzymatic hydrolysis. Pretreatment is an effective way to remove lignin and improve the enzymatic digestibility of lignocellulose. Along with removing lignin, the pretreatment can modify the lignin structure, which significantly affects the non-productive adsorption of cellulase onto lignin. To relieve the inhibitory effect of lignin on enzymatic hydrolysis, enormous efforts have been made to elucidate the correlation of lignin structure with lignin–enzyme interactions but with different views. In addition, contrary to the traditional belief that lignin inhibits enzymatic hydrolysis, in recent years, the addition of water-soluble lignin such as lignosulfonate or low molecular-weight lignin exerts a positive effect on enzymatic hydrolysis, which gives a new insight into the lignin–enzyme interactions. For throwing light on their structure–interaction relationship during enzymatic hydrolysis, the effect of residual lignin in substrate and introduced lignin in hydrolysate on enzymatic hydrolysis are critically reviewed, aiming at realizing the targeted regulation of lignin structure for improving the saccharification of lignocellulose. The review is also focused on exploring the lignin–enzyme interactions to mitigate the negative impact of lignin and reducing the cost of enzymatic hydrolysis of lignocellulose.
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant–endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus–thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)
Aims In the production of the natural medicinal plant American ginseng, replantation typically fails due to continuous cropping obstacles. However, the cause is still not clear and needs more research. Methods Soil samples were collected from (a) maize fields where American ginseng had never been planted, (b) fields where American ginseng had just been harvested, and (c) fields where maize had been planted for 2, 4 and 6 years respectively after American ginseng. We investigated the physicochemical properties, the enzymatic activities, and the soil microbial community structure and composition of the samples. Results We found that the content of soil salt, NH 4 + -N, and NO 3 − -N increased significantly in samples associated with the production of American ginseng, whereas the soil pH, carbon-to-nitrogen ratio, alkaline phosphatase, and cellulase activity all significantly decreased and gradually recovered to the pre-planting level. Moreover, the bacterial diversity decreased, while fungal diversity and richness increased; fungal richness continued to increase in farmlands replanted maize. The relative abundance of some microbial communities was changed significantly and was gradually restored with a longer time to replant maize. Pearson’s correlation analysis shown that significantly changed microbial communities were significantly associated with changes in soil pH, soil salt and nitrogen content, alkaline phosphatase, and cellulase activity. Conclusions Changes in soil pH, soil salt and nitrogen content caused changes in microbial community structure and composition, as well as cellulase and alkaline phosphatase activity. These changes may cause the continuous cropping obstacles of American ginseng and may be improved by planting maize.
A novel efficient Beta-glucanase from a paddy soil microbial metagenome with versatile activities
Background Cellulose, an abundant and renewable polysaccharides, constitutes the largest resource for bioconversion of biofuels. Plant polysaccharides hydrolysis is catalyzed by cellulases, which include endoglucanases, exoglucanases, and β-glucosidases. Converting cellulose and hemicellulose to short chains of oligosaccharides by endo-/exoglucanases is the key step for biofuel transformation. Intriguingly, β-glucanases with transglycosylation activity not only can relieve product inhibition of glucan hydrolysis but also has potential application as biocatalysts for functional materials. Results Here, a metagenomic fosmid library was constructed from a paddy soil for cellulase screening. One purified clone showing carboxymethylcellulase activity was isolated, and the complete β-glucanase gene (umcel9y-1) was cloned and overexpressed in Escherichia coli. Phylogenetic analysis indicated that β-glucanase Umcel9y-1 belonged to the theme C of glycoside hydrolase family 9. Amino acids sequence showed 58.4 % similarity between Umcel9y-1 and its closest characterized reference, cellulase Cel01. Biological characterization showed that Umcel9y-1 was an efficient endoglucanase and also exhibited high activities of exoglucanase and transglycosylation. The transglycosylation products of Umcel9y-1 including sophorose, laminaribiose, and gentiobiose, and transglycosylation was detected under all activated conditions. The order of catalytic efficiency for polysaccharides, cellooligosaccharides, and aryl-β-glycosides was p-nitrophenol-D-cellobioside, barley glucan, cellopentaose, cellotetraose, cellotriose, hydroxyethylcellulose, cellohexose, laminarin, and carboxymethylcellulose, respectively. The barley glucan was the optimal polysaccharides for Umcel9y-1 with K m and K cat/K m values of 13.700 mM and 239.152 s-1 mM-1, respectively. Conclusion Biological characterizations of recombinant Umcel9y-1 showed that the versatile β-glucanase had efficient endoglucanase activity to barley glucan and also exhibited high activities of exoglucanase and transglycosylation. The optimum conditions of recombinant Umcel9y-1 was pH 6.5-7.0 at 37 °C with predominant halotolerance and high-thermal stability. These results indicate that the novel metagenomic-derived β-glucanase may be a potent candidate for industrial applications.
Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima
Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10–100 kDa and 50–100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.