Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "enhanced cuckoo optimisation algorithm"
Sort by:
Stochastic scenario-based model and investigating size of energy storages for PEM-fuel cell unit commitment of micro-grid considering profitable strategies
This paper presents a unit commitment formulation for micro-grid that includes a significant number of grid parallel Proton Exchange Membrane-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up/down time constraints. The aim of this problem is to determine the optimum size of energy storage like battery storages and use the efficient hydrogen and thermal energy storages and to schedule the committed units' output power while satisfying practical constraints and electrical/thermal load demand over one day with 15 min time step. In order to best use of multiple PEM-FCPPs, hydrogen storage management is carried out. Also, since the electrical and heat load demand are not synchronised, it could be useful to store the extra heat of PEM-FCPPs in the peak electrical load in order to satisfy delayed heat demands. Due to uncertainty nature of electrical/thermal load, photovoltaic and wind turbine output power and market price, a two-stage scenario-based stochastic programming model, where the first stage prescribes the here-and-now variables and the second stage determines the optima value of wait-and-see variables under cost minimization is implemented. For solving the problem, a new enhanced cuckoo optimisation algorithm is presented and successfully applied to two typical micro-grids. Quantitative results show its usefulness.
High-Performance Pure Sine Wave Inverter with Robust Intelligent Sliding Mode Maximum Power Point Tracking for Photovoltaic Applications
Photovoltaic (PV) power generation has been extensively used as a result of the limited petrochemical resources and the rise of environmental awareness. Nevertheless, PV arrays have a widespread range of voltage changes in a variety of solar radiation, load, and temperature circumstances, so a maximum power point tracking (MPPT) method must be applied to get maximum power from PV systems. Sliding mode control (SMC) is effectively used in PV power generation due to its robustness, design simplicity, and superior interference suppression. When the PV array is subject to large parameter changes/highly uncertain conditions, the SMC leads to degraded steady-state performance, poor transient tracking speed, and unwanted flutter. Therefore, this paper proposes a robust intelligent sliding mode MPPT-based high-performance pure sine wave inverter for PV applications. The robust SMC is designed through fast sliding regime, which provides fixed time convergence and a non-singularity that allows better response in steady-state and transience. To avoid the flutter caused by system unmodeled dynamics, an enhanced cuckoo optimization algorithm (ECOA) with automatically adjustable step factor and detection probability is used to search control parameters of the robust sliding mode, thus finding global optimal solutions. The coalescence of both robust SMC and ECOA can control the converter to obtain MPPT with faster convergence rate and without untimely trapping at local optimal solutions. Then the pure sine wave inverter with robust intelligent sliding mode MPPT of the PV system delivers a high-quality and stable sinusoidal wave voltage to the load. The efficacy of the proposed method is validated on a MPPT pure sine wave inverter system by using numerical simulations and experiments. The results show that the output of the proposed PV system can improve steady-state performance and transient tracking speed.
A review on optimization of antenna array by evolutionary optimization techniques
PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.
Association rule hiding using enhanced elephant herding optimization algorithm
Association rule hiding is an efficient solution that helps organizations to avoid the risk caused by sensitive knowledge leakage when sharing data in their collaborations. Cuckoo Optimization Algorithm (COA) sanitizes the transaction database but this method has limitation due to its slow convergence and exploitation capabilities. Hence in this paper, Enhanced Elephant Herding Optimization Algorithm for Association Rule Hiding (EEHOA4ARH) is proposed for association rule hiding. In EEHOA, two core functions such as clan updating operator and separating operator are used for association rule hiding that also realizes the fast convergence and exploitation capabilities. Moreover, the searching strategy in COA4ARH for the selection of best solution is highly time consuming. To reduce the time consumption for the selection of best solution, a Crowding Distance (CD) concept is combined with EEHOA4ARH. By continuously updating the best elephant and replacing the worst elephant in the population, EEHOA4ARH-CD sanitizes the transaction database effectively. Thus the proposed EEHOA4ARH achieves the less computation time, fast convergence and better exploitation capabilities by using crowding distance. The experimental results prove the effectiveness of the proposed EEHOA4ARH–CD method in terms of hiding failure, lost rule and execution time with 44.66 s.
Dimension-by-dimension enhanced cuckoo search algorithm for global optimization
Cuckoo search (CS) algorithm is an efficient meta-heuristic algorithm that has been successfully applied in many fields. However, the algorithm uses the whole updating and evaluating strategy on solutions. For solving multi-dimensional optimization problems, solutions with partial dimension evolution may be discarded due to mutual interference among dimensions. Therefore, this strategy may deteriorate the quality solution and convergence rate of algorithm. To overcome this defect and enhance the algorithm performance, a dimension-by-dimension enhanced CS algorithm is proposed. In the global explorative random walk, the improved algorithm uses the dimension-by-dimension updating and evaluating strategy on solutions. This strategy combines the updated values of each dimension with the values of other dimensions into a new solution. In addition, a greedy strategy is adopted to accept new solution and the search center is set as the current optimal solution. The proposed algorithm was tested on fourteen well-known benchmark functions. The numerical results show that the improved algorithm can effectively enhance the quality solution and convergence rate for the global optimization problems.