Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "gadolinite"
Sort by:
Minasgeraisite-(Y) discredited as an ordered intermediate between datolite and hingganite-(Y)
Minasgeraisite-(Y) is discredited on the basis of it being an ordered intermediate between datolite and hingganite-(Y) (IMA-CNMNC Proposal 23-F). An idealised formula is (Ca2Y2)∎2(Be2B2)Si4O16(OH)4, which corresponds to Ca2∎B2Si2O8(OH)2 (datolite) + Y2∎Be2Si2O8(OH)2 (hingganite-(Y)). The type material is rich in Bi, the Bi-richest portion yet discovered from the type locality is shown to be an intermediate member between datolite, hingganite-(Y) and a hypothetical end-member phase yet to be found of composition Bi2∎Be2Si2O8(OH)2. Minasgeraisite-(Y) has a different space group to datolite and hingganite-(Y). This lowering of symmetry to an acentric triclinic system is caused by different element occupancies on the A site of the gadolinite supergroup structure, which for minasgeraisite-(Y) becomes four individual sites. Such an order-disorder of elements is not considered as species-defining criteria despite the change in space group. Therefore, minasgeraisite-(Y) is discredited.
Gadolinite-(Nd), a new member of the gadolinite supergroup from Fe-REE deposits of Bastnas-type, Sweden
A new member of the gadolinite supergroup, gadolinite-(Nd), IMA2016-013, ideally Nd2FeBe2Si2O10, was found in the Malmkarra mine, ∼3.5 km WSW of Norberg, south-central Sweden, where it occurs in association with fluorbritholite-(Ce), vastmanlandite-(Ce), dollaseite-(Ce), bastnasite-(Ce) and tremolite. Gadolinite-(Nd) forms anhedral grains up to 150 µm in size, commonly occurring as aggregates of olive green colour. The crystals are transparent with vitreous to adamantine lustre. Gadolinite-(Nd) is brittle with conchoidal fracture, no cleavage or parting was observed. It has a white streak, the Mohs hardness is 6.5-7 and the calculated density is 4.86 g cm-3. Optically, the mineral is weakly pleochroic in shades of olive green, biaxial (-), nα = 1.78(1), nβ(calc.) = 1.80, nγ = 1.81(1) measured in white light, 2V(meas.) = 62(3)°. Electron-microprobe and laser ablation inductively coupled plasma mass spectrometry analysis [in wt.%] provided SiO2 21.77, Y2O3 5.49, La2O3 2.78, Ce2 O3 14.04, Pr2O3 3.28, Nd2O3 19.27, Sm2O3 5.30, Eu2O3 0.24, Gd2O3 4.10, Tb2O3 0.36, Dy2O3 1.32, Ho2O3 0.18, Er2O3 0.38, MgO 0.51, CaO 0.14, MnO 0.10, FeO 10.62, B2O3 0.10, BeOcalc. 8.99, H2Ocalc. 0.55 and total 99.52 giving the following empirical formula (based on 2 Si): (Nd0.632 Ce0.472Y0.268Sm0.168Gd0.125Pr0.110La0.094Dy0.039Ca0.014 Er0.011 Tb0.011Eu0.008Ho0.008)Σ1.957(Fe0.816Mg0.070Mn0.008) Σ0.894(Be1.984B0.016)Σ2.000Si2O9.660OH0.337. A weak Raman vibration band at ∼3525 cm-1 confirms the presence of water in the structure. Gadolinite-(Nd) is monoclinic, P21/c, with a = 4.8216(3) Å, b = 7.6985(4) Å, c = 10.1362(6) Å, β = 90.234(4)°, V = 376.24(6) Å3 and Z = 2. The strongest X-ray diffraction lines are [dobs in Å (hkl) Irel]: 4.830 (100) 72, 3.603 (021) 37, 3.191(-112) 52, 3.097 (013) 35, 2.888 (121) 100, 2.607(113) 49, 2.412 (200) 24. Along with the Malmkarra mine, gadolinite-(Nd) was also recorded also at Johannagruvan and Nya Bastnas. The minerals of the gadolinite subgroup together with fluorbritholite-(Ce) incorporate the highest fraction of medium-to-heavy rare-earth elements among associated rare-earth element minerals in the Malmkarra mine and possibly in all Bastnas-type deposits.
Re-investigation of 'minasgeraisite-(y)' from the Jaguaraçu Pegmatite, Brazil and high-temperature crystal chemistry of gadolinite-supergroup minerals
The chemical composition (including B, Be and Li), the Raman spectrum and the crystal-structure evolution (at the temperature range 27-1000°C) of a Mn-bearing, Bi-rich gadolinite-subgroup mineral from the Jaguaraçu Pegmatite, Brazil (type-locality of minasgeraisite-(Y)) was studied. Elemental mapping revealed that the crystal investigated has complex chemical zonation with various Bi (∼8-24 wt.% Bi2O3), Ca (∼8-10 wt.% CaO) and Y (∼11-17 wt.% Y2O3) content. The sample investigated has all the specific features of the chemical composition of minasgeraisite-(Y), except Ca excess and, thus, should be considered as hingganite-(Y). The Raman spectrum of the sample under study has bands at 140, 179, 243, 350, 446, 519, 559, 625, 902, 973, 3224, 3353, 3532 and 3763 cm-1, and is similar to that of hingganite-(Y) / -(Nd). Crystal-structure refinement confirmed that the crystal in question should be considered as hingganite-(Y) and is in line with the previously obtained data on gadolinite-subgroup minerals from the Jaguaraçu Pegmatite. High-temperature single-crystal X-ray diffraction studies revealed that the mineral starts to decompose above 800°C. We can conclude that beryllosilicates are most stable at high-temperature conditions within the gadolinite supergroup and that species with a higher M-site occupancy have higher stability upon heating.
Crystal chemistry and microfeatures of gadolinite imprinted by pegmatite formation and alteration evolution
Gadolinite [REE Fe Be Si ] is a common mineral in certain types of rare element and rare earth element (REL-REE) pegmatites. Changes in pegmatite environment during and after gadolinite formation may be devised by studying its crystal-chemical properties and a thorough observation of microfeatures in the mineral matrix. Post-crystallization processes in pegmatite might trigger alteration mechanisms in gadolinite like in other REE-rich pegmatite minerals, whereby various late-magmatic or metasomatic events may affect mineral chemistry. Three gadolinite samples originating from various pegmatite occurrences in southern Norway offer an excellent opportunity in studying post-crystallization evolution of the pegmatites; by determining their crystallographic, chemical, and micro-textural features, imprints of the related processes in the pegmatites have been characterized in this study. Relevant mineral information was collected in recrystallization experiments of fully or slightly metamictized gadolinite samples and subsequent XRD analyses. Micro-Raman spectroscopy, electron microprobe analysis (EMPA), and scanning electron microscope–backscattered electron–energy-dispersive X-ray spectroscopy (SEM-BSE-EDS) analyses were employed to retrieve micro-chemical properties and related micro-textural features of the mineral matrix. With a reference to the gadolinite supergroup, a general alteration path can be envisaged outlining the pegmatite evolution and suggesting the occurrence of the secondary REE mineral phases: altered gadolinite domains prove Ca enrichment with a tendency toward the hingganite composition, while a slight fluorine increase and sporadic secondary fluorite occurrence imply a significant role of fluorine as a complexing agent in the dissolution-reprecipitation mechanism of metasomatic alteration in the mineral. Micro-Raman spectra show improved vibration statistics for the altered gadolinite domains, which could be linked to the substitution of rare earth elements (REE) by Ca and a possible increase of structural ordering within the gadolinite structure, being at the same time an indication of structural healing of metamictized domains by metasomatic processes. A study of microfeatures in the complex silicates like gadolinite proves to be an excellent tool to trace post-crystallization processes in a pegmatitic environment. With a slight redistribution of radionuclides during an alteration in gadolinite, a moderate precaution has to be taken when selecting gadolinite for U-Th-Pb dating.
Compressibility of hingganite-(Y): high-pressure single crystal X-ray diffraction study
Behaviour of hingganite-(Y), Y 2 □Be 2 Si 2 O 8 (OH) 2 , on compression to 47 GPa has been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction at room temperature in a diamond anvil cell. In the studied pressure range no obvious phase transitions have been observed. The compression of hingganite-(Y) crystal structure is anisotropic, with b axis showing the maximal compressibility. A fit of the experimental pressure–volume data by the Birch-Murnaghan third-order equation of state yielded the bulk modulus of 131(2) GPa and its pressure first derivative of 3.5(2). The difference between high-pressure behaviour of hingganite-(Y) and structurally related datolite is governed by the different chemical nature of interlayer cations.
Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic
Mineral assemblages of primary and secondary Be-minerals were examined in intraplutonic euxenite-type NYF pegmatites of the Třebíč Pluton, Moldanubian Zone occurring between Třebíč and Vladislav south of the Třebíč fault. Primary magmatic Be-minerals crystallized mainly in massive pegmatite (paragenetic type I) including common beryl I, helvite-danalite I, and a rare phenakite I. Rare primary hydrothermal beryl II and phenakite II occur in miarolitic pockets (paragenetic type II). Secondary hydrothermal Be-minerals replaced primary precursors or filled fractures and secondary cavities, or they are associated with \"adularía\" and quartz (paragenetic type III). They include minerals of bohseite-bavenite series, less abundant beryl III, bazzite III, helvite-danalite III, milarite-agakhanovite-(Y) III, phenakite III, and datolite-hmggamte-(Y) III. Chemical composition of the individual minerals is characterized by elevated contents of Na, Cs, Mg, Fe, Sc in beryl I and II; Na, Ca, Mg, Fe, Al in bazzite III; REE in milarite-agakhanovite-(Y) III; variations in Fe/Mn in helvite-danalite and high variation of Al in bohseite-bavenite series. Replacement reactions of primary Be-minerals are commonly complex and the sequence of crystallization of secondary Be-minerals is not defined; minerals of bohseite-bavenite series are mostly the latest. Beryl usually occurs in pegmatites with rare tourmaline, whereas helvite-danalite bearing pegmatites are tourmaline-rich. Abundant tourmaline in pegmatites with helvite-danalite and its scarcity in beryl-bearing pegmatites indicate that early tourmaline crystallization affected activity of Al in the parental medium and thus may have controlled formation of primary Be-minerals (beryl - higher Al, helvite-danalite - lower Al) which crystallized later. Secondary Be-minerals with dominant minerals of bohseite-bavenite series and milarite suggest high activity of Ca in fluids. Variations in chemical composition (Al contents) of bohseite-bavenite series were controlled by the chemical composition of the precursor. High variability of primary magmatic Be-minerals within a single pegmatite district is exceptional and it is constrained by variable activities of Si and mainly Al, divalent cations - Ca, Mn, Fe, Zn and Mg, trivalent cations - REEs, Sc, and B, S, and fO2 in the individual pegmatites.
Low-Temperature Crystal Chemistry of Hingganite-(Y), from the Wanni Glacier, Switzerland
Hingganite from the Wanni glacier (Switzerland) was studied by means of energy dispersive and wavelength-dispersive spectroscopy, Raman spectroscopy, and low-temperature single-crystal X-ray diffraction. According to its chemical composition, the investigated mineral should be considered as hingganite-(Y). It showed a relatively high content of Gd, Dy, and Er and had limited content of lighter rare-earth element (REE), which is typical for Alpine gadolinite group minerals. The most intense Raman bands were 116, 186, 268, 328, 423, 541, 584, 725, 923, 983, 3383, and 3541 cm−1. Based on data of low-temperature [(−173)–(+7) °C] in situ single-crystal X-ray diffraction, it was shown that the hingganite-(Y) crystal structure was stable in the studied temperature range and no phase transitions occurred. Hingganite-(Y) demonstrated low volumetric thermal expansion (αV = 9(2) × 10−6 °C−1) and had a high thermal expansion anisotropy up to compression along one of the directions in the layer plane. Such behavior is caused by the shear deformations of its monoclinic unit cell.
Cation order in the crystal structure of 'minasgeraisite-(Y)'; dedicated to our friend the late Luis Menezes, who brought this mineral to our attention and graciously provided a superior specimen with crystals suitable for single-crystal structure work
The crystal structure of 'minasgeraisite-(Y)', triclinic P1, a = 9.994(4), b = 7.705(3), c = 4.764(2) Å, α = 90.042(9), β = 90.218(14), γ = 90.034(9) (°), V = 366.8(5) Å3 and Z = 1, has been refined to an R1 index of 2.86% for 4170 observed (|Fo| > 4σF) reflections. Significant observed (|Fo| > 40-60 σF) reflections violate the presence of a 21-screw axis and an a-glide plane, negating the space group P21/a previously found for minerals of the gadolinite-datolite group. Averaging of the X-ray data in Laue groups 2/m and 1 gives the following agreement indices: 2/m (9.68%) and 1 (5.68%). The internal agreement index from averaging of identical reflections collected at multiple positions along the diffraction vector is significantly lower than that for the Laue group 1 Rpsi = 2.40%, where 13,109 reflections were collected, 4288 are unique for P1 symmetry, and Rpsi is based on a mean data redundancy factor of > 3. Both the data merging and an |E2-1| value of 0.773 indicate that P1 is the correct space group. The general formula for the gadolinite-datolite group is W2XZ2T2O8V2 (Z = 2) which we have expanded to 20 anions (Z = 1) to show the W-site cation ordering present in 'minasgeraisite-(Y)'. Bismuth, Ca and REE are ordered over four W sites, with Bi dominant at W1, Ca dominant at W2, and Y dominant at W3 and W4. The dominant constituent at the X sites is a vacancy, and Ca does not occur at the X sites. Significant B and Si are assigned to the Be-dominant Z sites, and the T sites are occupied by Si. The simplified 'minasgeraisite-(Y)' formula (Z = 1) is BiCa(Y,Ln)2(∎,Mn)2(Be,B,Si)4Si4O16 [(OH),O]4. 'Minasgeraisite-(Y)' should be assigned to a triclinic subgroup of the gadolinite-datolite group, and its lower symmetry suggests that Ca-substituted gadolinites and hingganites should be examined for evidence of triclinic symmetry associated with cation order at the W sites.