Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,390
result(s) for
"gait analysis algorithm"
Sort by:
TRIPOD—A Treadmill Walking Dataset with IMU, Pressure-Distribution and Photoelectric Data for Gait Analysis
2021
Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.
Journal Article
Automatic gait events detection with inertial measurement units: healthy subjects and moderate to severe impaired patients
by
Voisard, Cyril
,
Oudre, Laurent
,
Ricard, Damien
in
Accelerometry - instrumentation
,
Accelerometry - methods
,
Adult
2024
Background
Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases.
Methods
We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal.
Results
We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3–13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8–39] ms) and 26 ms (IQR [12–50] ms).
Conclusions
Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.
Journal Article
Automatic gait EVENT detection in older adults during perturbed walking
by
Wang, Shuaijie
,
Omar, Kazi Shahrukh
,
Bhatt, Tanvi
in
Accidental Falls - prevention & control
,
Adults
,
Aged
2025
Accurate detection of gait events in older adults, particularly during perturbed walking, is essential for evaluating balance control and fall risk. Traditional force plate-based methods often face limitations in perturbed walking scenarios due to the difficulty in landing cleanly on the force plates. Subsequently, previous studies have not addressed gait event automatic detection methods for perturbed walking. This study introduces an automated gait event detection method using a bidirectional gated recurrent unit (Bi-GRU) model, leveraging ground reaction force, joint angles, and marker data, for both regular and perturbed walking scenarios from 307 healthy older adults. Our marker-based model achieved over 97% accuracy with a mean error of less than 14 ms in detecting touchdown (TD) and liftoff (LO) events for both walking scenarios. The results highlight the efficacy of kinematic approaches, demonstrating their potential in gait event detection for clinical settings. When integrated with wearable sensors or computer vision techniques, these methods enable real-time, precise monitoring of gait patterns, which is helpful for applying personalized programs for fall prevention. This work takes a significant step forward in automated gait analysis for perturbed walking, offering a reliable method for evaluating gait patterns, balance control, and fall risk in clinical settings.
Journal Article
Using New Camera-Based Technologies for Gait Analysis in Older Adults in Comparison to the Established GAITRite System
by
Röhling, Hanna
,
Sattler, Igor
,
Mansow-Model, Sebastian
in
Aged
,
Aged, 80 and over
,
Algorithms
2019
Various gait parameters can be used to assess the risk of falling in older adults. However, the state-of-the-art systems used to quantify gait parameters often come with high costs as well as training and space requirements. Gait analysis systems, which use mobile and commercially available cameras, can be an easily available, marker-free alternative. In a study with 44 participants (age ≥ 65 years), gait patterns were analyzed with three different systems: a pressure sensitive walkway system (GAITRite-System, GS) as gold standard, Motognosis Labs Software using a Microsoft Kinect Sensor (MKS), and a smartphone camera-based application (SCA). Intertrial repeatability showed moderate to excellent results for MKS (ICC(1,1) 0.574 to 0.962) for almost all measured gait parameters and moderate reliability in SCA measures for gait speed (ICC(1,1) 0.526 to 0.535). All gait parameters of MKS showed a high level of agreement with GS (ICC(2,k) 0.811 to 0.981). Gait parameters extracted with SCA showed poor reliability. The tested gait analysis systems based on different camera systems are currently only partially able to capture valid gait parameters. If the underlying algorithms are adapted and camera technology is advancing, it is conceivable that these comparatively simple methods could be used for gait analysis.
Journal Article
Toward Convenient and Accurate IMU-Based Gait Analysis
2025
While inertial measurement unit (IMU)-based systems have shown their potential in quantifying medically significant gait parameters, it remains to be determined whether they can provide accurate and reliable parameters both across various walking conditions and in healthcare settings. Using an IMU-based system we previously developed, with one IMU module on each subject’s heel, we quantify the gait parameters of 55 men and 46 women, all healthy and aged 40–65, in normal, dual-task, and fast walking conditions. We evaluate their intra-session reliability, and we establish a new reference database of such parameters showing good to excellent reliability. ICC(2,1) assesses relative reliability, while SEM% and MDC% assess absolute reliability. The reliability is excellent for all spatiotemporal gait parameters and the stride length (SL) symmetry ratio (ICC ≥ 0.90, SEM% ≤ 4.5%, MDC% ≤ 12.4%) across all conditions. It is good to excellent for the fast walking performance (FWP) indices of stride (Sr), stance (Sa), double-support (DS), and step (St) times; gait speed (GS); and the GS normalized to leg length (GSn1) and body height (GSn2) (ICC ≥ 0.91, |SEM%| ≤ 10.0%, |MDC%| ≤ 27.6%). Men have a higher swing time (Sw) and SL across all conditions. The following parameters are gender-independent: (1) Sa, DS, GSn1, GSn2; (2) the symmetry ratios of SL and GS, as well as Sa% and Sw% (representing Sa and Sw as percentages of Sr); and (3) the FWPs of Sr, Sa, Sw, DS, St, cadence, Sa% and Sw%. Our results provide reference values with new insights into gender FWP comparisons rarely reported in the literature. The advantages and reliability of our IMU-based system make it suitable in medical applications such as prosthetic evaluation, fall risk assessment, and rehabilitation.
Journal Article
A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis
2025
Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations. The relevant papers were subjected to analysis using the PRISMA method, and 72 articles that met the criteria for this research project were identified. A detailing of the most commonly used visual sensor systems, machine learning algorithms, human gait analysis parameters, optimal camera placement, and gait parameter extraction methods is presented in the analysis. The findings of this research indicate that non-invasive depth cameras are gaining increasing popularity within this field. Furthermore, depth learning algorithms, such as convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, are being employed with increasing frequency. This review seeks to establish the foundations for future innovations that will facilitate the development of more effective, versatile, and user-friendly gait analysis tools, with the potential to significantly enhance human mobility, health, and overall quality of life. This work was supported by [GOBIERNO DE ESPANA/PID2023-150967OB-I00].
Journal Article
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
2021
Spatiotemporal parameters can characterize the gait patterns of individuals, allowing assessment of their health status and detection of clinically meaningful changes in their gait. Video-based markerless motion capture is a user-friendly, inexpensive, and widely applicable technology that could reduce the barriers to measuring spatiotemporal gait parameters in clinical and more diverse settings. Two studies were performed to determine whether gait parameters measured using markerless motion capture demonstrate concurrent validity with those measured using marker-based motion capture and a pressure-sensitive gait mat. For the first study, thirty healthy young adults performed treadmill gait at self-selected speeds while marker-based motion capture and synchronized video data were recorded simultaneously. For the second study, twenty-five healthy young adults performed over-ground gait at self-selected speeds while footfalls were recorded using a gait mat and synchronized video data were recorded simultaneously. Kinematic heel-strike and toe-off gait events were used to identify the same gait cycles between systems. Nine spatiotemporal gait parameters were measured by each system and directly compared between systems. Measurements were compared using Bland-Altman methods, mean differences, Pearson correlation coefficients, and intraclass correlation coefficients. The results indicate that markerless measurements of spatiotemporal gait parameters have good to excellent agreement with marker-based motion capture and gait mat systems, except for stance time and double limb support time relative to both systems and stride width relative to the gait mat. These findings indicate that markerless motion capture can adequately measure spatiotemporal gait parameters of healthy young adults during treadmill and over-ground gait.
Journal Article
Gait variability as digital biomarker of disease severity in Huntington’s disease
by
Jensen, Dennis
,
Marxreiter, F.
,
Eskofier, Bjoern
in
Adult
,
Biomarkers
,
Biomechanical Phenomena - physiology
2020
Background
Impaired gait plays an important role for quality of life in patients with Huntington’s disease (HD). Measuring objective gait parameters in HD might provide an unbiased assessment of motor deficits in order to determine potential beneficial effects of future treatments.
Objective
To objectively identify characteristic features of gait in HD patients using sensor-based gait analysis. Particularly, gait parameters were correlated to the Unified Huntington’s Disease Rating Scale, total motor score (TMS), and total functional capacity (TFC).
Methods
Patients with manifest HD at two German sites (
n
= 43) were included and clinically assessed during their annual ENROLL-HD visit. In addition, patients with HD and a cohort of age- and gender-matched controls performed a defined gait test (4 × 10 m walk). Gait patterns were recorded by inertial sensors attached to both shoes. Machine learning algorithms were applied to calculate spatio-temporal gait parameters and gait variability expressed as coefficient of variance (CV).
Results
Stride length (− 15%) and gait velocity (− 19%) were reduced, while stride (+ 7%) and stance time (+ 2%) were increased in patients with HD. However, parameters reflecting gait variability were substantially altered in HD patients (+ 17% stride length CV up to + 41% stride time CV with largest effect size) and showed strong correlations to TMS and TFC (0.416 ≤
r
Sp
≤ 0.690). Objective gait variability parameters correlated with disease stage based upon TFC.
Conclusions
Sensor-based gait variability parameters were identified as clinically most relevant digital biomarker for gait impairment in HD. Altered gait variability represents characteristic irregularity of gait in HD and reflects disease severity.
Journal Article
Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness
by
Font-Llagunes, Josep M.
,
de Miguel-Fernández, Jesús
,
Prinsen, Erik
in
Adaptive algorithms
,
Adaptive control
,
Algorithms
2023
Background
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.
Methods
Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.
Results
(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.
Conclusions
Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies.
Journal Article
Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis
by
Van den Bussche, Maxime
,
Scataglini, Sofia
,
Truijen, Steven
in
3D marker-based motion capture
,
3D markerless camera-based motion capture
,
Accuracy
2024
(1) Background: Marker-based 3D motion capture systems (MBS) are considered the gold standard in gait analysis. However, they have limitations for which markerless camera-based 3D motion capture systems (MCBS) could provide a solution. The aim of this systematic review and meta-analysis is to compare the accuracy, validity, and reliability of MCBS and MBS. (2) Methods: A total of 2047 papers were systematically searched according to PRISMA guidelines on 7 February 2024, in two different databases: Pubmed (1339) and WoS (708). The COSMIN-tool and EBRO guidelines were used to assess risk of bias and level of evidence. (3) Results: After full text screening, 22 papers were included. Spatiotemporal parameters showed overall good to excellent accuracy, validity, and reliability. For kinematic variables, hip and knee showed moderate to excellent agreement between the systems, while for the ankle joint, poor concurrent validity and reliability were measured. The accuracy and concurrent validity of walking speed were considered excellent in all cases, with only a small bias. The meta-analysis of the inter-rater reliability and concurrent validity of walking speed, step time, and step length resulted in a good-to-excellent intraclass correlation coefficient (ICC) (0.81; 0.98). (4) Discussion and conclusions: MCBS are comparable in terms of accuracy, concurrent validity, and reliability to MBS in spatiotemporal parameters. Additionally, kinematic parameters for hip and knee in the sagittal plane are considered most valid and reliable but lack valid and accurate measurement outcomes in transverse and frontal planes. Customization and standardization of methodological procedures are necessary for future research to adequately compare protocols in clinical settings, with more attention to patient populations.
Journal Article