MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system
Journal Article

Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system

2021
Request Book From Autostore and Choose the Collection Method
Overview
Spatiotemporal parameters can characterize the gait patterns of individuals, allowing assessment of their health status and detection of clinically meaningful changes in their gait. Video-based markerless motion capture is a user-friendly, inexpensive, and widely applicable technology that could reduce the barriers to measuring spatiotemporal gait parameters in clinical and more diverse settings. Two studies were performed to determine whether gait parameters measured using markerless motion capture demonstrate concurrent validity with those measured using marker-based motion capture and a pressure-sensitive gait mat. For the first study, thirty healthy young adults performed treadmill gait at self-selected speeds while marker-based motion capture and synchronized video data were recorded simultaneously. For the second study, twenty-five healthy young adults performed over-ground gait at self-selected speeds while footfalls were recorded using a gait mat and synchronized video data were recorded simultaneously. Kinematic heel-strike and toe-off gait events were used to identify the same gait cycles between systems. Nine spatiotemporal gait parameters were measured by each system and directly compared between systems. Measurements were compared using Bland-Altman methods, mean differences, Pearson correlation coefficients, and intraclass correlation coefficients. The results indicate that markerless measurements of spatiotemporal gait parameters have good to excellent agreement with marker-based motion capture and gait mat systems, except for stance time and double limb support time relative to both systems and stride width relative to the gait mat. These findings indicate that markerless motion capture can adequately measure spatiotemporal gait parameters of healthy young adults during treadmill and over-ground gait.