Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
19,988 result(s) for "gastrointestinal neoplasms"
Sort by:
Cancer-associated fibroblasts in gastrointestinal cancer
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.Cancer-associated fibroblasts are critical components of the tumour mesenchyme. In this Review, the authors outline the emerging understanding of gastrointestinal cancer-associated fibroblasts with a particular emphasis on their origin and heterogeneity, as well as their function in cancer biology.
Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies
Comprehensive genomic profiling enables genomic biomarker detection in advanced solid tumors. Here, to evaluate the utility of circulating tumor DNA (ctDNA) genotyping, we compare trial enrollment using ctDNA sequencing in 1,687 patients with advanced gastrointestinal (GI) cancer in SCRUM-Japan GOZILA (no. UMIN000016343), an observational ctDNA-based screening study, to enrollment using tumor tissue sequencing in the same centers and network (GI-SCREEN, 5,621 patients). ctDNA genotyping significantly shortened the screening duration (11 versus 33 days, P  < 0.0001) and improved the trial enrollment rate (9.5 versus 4.1%, P  < 0.0001) without compromising treatment efficacy compared to tissue genotyping. We also describe the clonal architecture of ctDNA profiles in ~2,000 patients with advanced GI cancer, which reinforces the relevance of many targetable oncogenic drivers and highlights multiple new drivers as candidates for clinical development. ctDNA genotyping has the potential to accelerate innovation in precision medicine and its delivery to individual patients. An observational study on a large cohort of patients with gastrointestinal cancer demonstrates the utility of ctDNA analysis for accelerating the enrollment of patients in clinical trials with no accompanying deterioration in treatment efficacy.
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.Farnesoid X receptor (FXR) is involved in the control of bile acid synthesis and enterohepatic circulation. This Review discusses the role of FXR in metabolic diseases and gastrointestinal and liver cancers, highlighting underlying mechanisms and potential therapeutic targets.
Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers
BackgroundDespite unprecedented benefit from immune checkpoint inhibitors (ICIs) in patients with mismatch repair deficient (dMMR)/microsatellite instability high (MSI-H) advanced gastrointestinal cancers, a relevant proportion of patients shows primary resistance or short-term disease control. Since malignant effusions represent an immune-suppressed niche, we investigated whether peritoneal involvement with or without ascites is a poor prognostic factor in patients with dMMR/MSI-H metastatic colorectal cancer (mCRC) and gastric cancer (mGC) receiving ICIs.MethodsWe conducted a global multicohort study at Tertiary Cancer Centers and collected clinic-pathological data from a cohort of patients with dMMR/MSI-H mCRC treated with anti-PD-(L)1 ±anti-CTLA-4 agents at 12 institutions (developing set). A cohort of patients with dMMR/MSI-high mGC treated with anti-PD-1 agents±chemotherapy at five institutions was used as validating dataset.ResultsThe mCRC cohort included 502 patients. After a median follow-up of 31.2 months, patients without peritoneal metastases and those with peritoneal metastases and no ascites had similar outcomes (adjusted HR (aHR) 1.15, 95% CI 0.85 to 1.56 for progression-free survival (PFS); aHR 0.96, 95% CI 0.65 to 1.42 for overall survival (OS)), whereas inferior outcomes were observed in patients with peritoneal metastases and ascites (aHR 2.90, 95% CI 1.70 to 4.94; aHR 3.33, 95% CI 1.88 to 5.91) compared with patients without peritoneal involvement. The mGC cohort included 59 patients. After a median follow-up of 17.4 months, inferior PFS and OS were reported in patients with peritoneal metastases and ascites (aHR 3.83, 95% CI 1.68 to 8.72; aHR 3.44, 95% CI 1.39 to 8.53, respectively), but not in patients with only peritoneal metastases (aHR 1.87, 95% CI 0.64 to 5.46; aHR 2.15, 95% CI 0.64 to 7.27) when compared with patients without peritoneal involvement.ConclusionsPatients with dMMR/MSI-H gastrointestinal cancers with peritoneal metastases and ascites should be considered as a peculiar subgroup with highly unfavorable outcomes to current ICI-based therapies. Novel strategies to target the immune-suppressive niche in malignant effusions should be investigated, as well as next-generation ICIs or intraperitoneal approaches.
mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer
BACKGROUNDTherapeutic vaccinations against cancer have mainly targeted differentiation antigens, cancer-testis antigens, and overexpressed antigens and have thus far resulted in little clinical benefit. Studies conducted by multiple groups have demonstrated that T cells recognizing neoantigens are present in most cancers and offer a specific and highly immunogenic target for personalized vaccination.METHODSWe recently developed a process using tumor-infiltrating lymphocytes to identify the specific immunogenic mutations expressed in patients' tumors. Here, validated, defined neoantigens, predicted neoepitopes, and mutations of driver genes were concatenated into a single mRNA construct to vaccinate patients with metastatic gastrointestinal cancer.RESULTSThe vaccine was safe and elicited mutation-specific T cell responses against predicted neoepitopes not detected before vaccination. Furthermore, we were able to isolate and verify T cell receptors targeting KRASG12D mutation. We observed no objective clinical responses in the 4 patients treated in this trial.CONCLUSIONThis vaccine was safe, and potential future combination of such vaccines with checkpoint inhibitors or adoptive T cell therapy should be evaluated for possible clinical benefit in patients with common epithelial cancers.TRIAL REGISTRATIONPhase I/II protocol (NCT03480152) was approved by the IRB committee of the NIH and the FDA.FUNDINGCenter for Clinical Research, NCI, NIH.
Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers
During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1–3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4–8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the ‘rule’ rather than the ‘exception’. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
Microsatellite instability determines whether patients with gastrointestinal cancer respond exceptionally well to immunotherapy. However, in clinical practice, not every patient is tested for MSI, because this requires additional genetic or immunohistochemical tests. Here we show that deep residual learning can predict MSI directly from H&E histology, which is ubiquitously available. This approach has the potential to provide immunotherapy to a much broader subset of patients with gastrointestinal cancer.A deep residual learning framework identifies microsatellite instability in histology slides from patients with cancer and can be used to guide immunotherapy.
Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial
Targeting of KIT and PDGFRA with imatinib revolutionised treatment in gastrointestinal stromal tumour; however, PDGFRA Asp842Val (D842V)-mutated gastrointestinal stromal tumour is highly resistant to tyrosine kinase inhibitors. We aimed to assess the safety, tolerability, and antitumour activity of avapritinib, a novel KIT and PDGFRA inhibitor that potently inhibits PDGFRA D842V, in patients with advanced gastrointestinal stromal tumours, including patients with KIT and PDGFRA D842V-mutant gastrointestinal stromal tumours (NAVIGATOR). NAVIGATOR is a two-part, open-label, dose-escalation and dose-expansion, phase 1 study done at 17 sites across nine countries (Belgium, France, Germany, Poland, Netherlands, South Korea, Spain, the UK, and the USA). Patients aged 18 years or older, with an Eastern Cooperative Oncology Group performance status of 2 or less, and with adequate end-organ function were eligible to participate. The dose-escalation part of the study included patients with unresectable gastrointestinal stromal tumours. The dose-expansion part of the study included patients with an unresectable PDGFRA D842V-mutant gastrointestinal stromal tumour regardless of previous therapy or gastrointestinal stromal tumour with other mutations that either progressed on imatinib and one or more tyrosine kinase inhibitor, or only received imatinib previously. On the basis of enrolment trends, ongoing review of study data, and evolving knowledge regarding the gastrointestinal stromal tumour treatment paradigm, it was decided by the sponsor's medical director together with the investigators that patients with PDGFRA D842V mutations would be analysed separately; the results from this group of patients is reported in this Article. Oral avapritinib was administered once daily in the dose-escalation part (starting dose of 30 mg, with increasing dose levels once daily in continuous 28-day cycles until the maximum tolerated dose or recommended phase 2 dose was determined; in the dose-expansion part, the starting dose was the maximum tolerated dose from the dose-escalation part). Primary endpoints were maximum tolerated dose, recommended phase 2 dose, and safety in the dose-escalation part, and overall response and safety in the dose-expansion part. Safety was assessed in all patients from the dose-escalation part and all patients with PDGFRA D842V-mutant gastrointestinal stromal tumour in the dose-expansion part, and activity was assessed in all patients with PDGFRA D842V-mutant gastrointestinal stromal tumour who received avapritinib and who had at least one target lesion and at least one post-baseline disease assessment by central radiology. This study is registered with ClinicalTrials.gov, NCT02508532. Between Oct 26, 2015, and Nov 16, 2018 (data cutoff), 46 patients were enrolled in the dose-escalation part, including 20 patients with a PDGFRA D842V-mutant gastrointestinal stromal tumour, and 36 patients with a PDGFRA D842V-mutant gastrointestinal stromal tumour were enrolled in the dose-expansion part. At data cutoff (Nov 16, 2018), 38 (46%) of 82 patients in the safety population (median follow-up of 19·1 months [IQR 9·2–25·5]) and 37 (66%) of the 56 patients in the PDGFRA D842V population (median follow-up of 15·9 months [IQR 9·2–24·9]) remained on treatment. The maximum tolerated dose was 400 mg, and the recommended phase 2 dose was 300 mg. In the safety population (patients with PDGFRA D842V-mutant gastrointestinal stromal tumour from the dose-escalation and dose-expansion parts, all doses), treatment-related grade 3–4 events occurred in 47 (57%) of 82 patients, the most common being anaemia (14 [17%]); there were no treatment-related deaths. In the PDGFRA D842V-mutant population, 49 (88%; 95% CI 76–95) of 56 patients had an overall response, with five (9%) complete responses and 44 (79%) partial responses. No dose-limiting toxicities were observed at doses of 30–400 mg per day. At 600 mg, two patients had dose-limiting toxicities (grade 2 hypertension, dermatitis acneiform, and memory impairment in patient 1, and grade 2 hyperbilirubinaemia in patient 2). Avapritinib has a manageable safety profile and has preliminary antitumour activity in patients with advanced PDGFRA D842V-mutant gastrointestinal stromal tumours. Blueprint Medicines.
Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut–brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.