Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "gram angle difference field"
Sort by:
A Time–Frequency-Based Data-Driven Approach for Structural Damage Identification and Its Application to a Cable-Stayed Bridge Specimen
Structural damage identification based on structural health monitoring (SHM) data and machine learning (ML) is currently a rapidly developing research area in structural engineering. Traditional machine learning techniques rely heavily on feature extraction, where weak feature extraction can lead to suboptimal features and poor classification performance. In contrast, ML-based methods, particularly deep learning approaches like convolutional neural networks (CNNs), automatically extract relevant features from raw data, improving the accuracy and adaptability of the damage identification process. This study developed a time–frequency-based data-driven approach aiming to improve the effectiveness of traditional data-driven structural damage identification approaches for large complex structures. Firstly, the structural acceleration signals in the time domain were converted into two-dimensional images via the Gram angle difference field (GADF). Subsequently, the characteristic feature in the image data was studied by convolutional neural networks (CNNs) to predict the structural damage conditions. An experimental study on a scale model of a cable-stayed bridge was conducted to identify the damage of stay cables under the moving vehicle load on the main girders. The CNN was employed to extract the characteristic features from the time-varying monitoring data of vehicle–bridge interactions. The CNN parameters were optimized to conduct the structural damage classification task. The performance of the proposed method was evaluated by comparing it with various traditional pre-trained networks. The effect of environmental noise on the prediction accuracy was also investigated. The numerical results show that the ResNet model has the best performance in terms of damage identification accuracy and convergence speed, achieving higher accuracy and faster convergence compared to the other four traditional networks. The method can accurately identify damage on bridges using insufficient sensors on the bridge deck, which has valuable potential for application to real-world bridges with monitoring data. As the Signal-to-Noise Ratio (SNR) decreases from 20 dB to 2.5 dB, the prediction accuracy of ResNet decreases from 86.63% to 62.5%, which demonstrates the robustness and reliability in identifying structural damage.
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Contrapose the highly integrated, multiple types of faults and complex working conditions of aircraft electro hydrostatic actuator (EHA), to effectively identify its typical faults, we propose a fault diagnosis method based on fusion convolutional neural networks (FCNN). First, the aircraft EHA fault data is encoded by gram angle difference field (GADF) to obtain the fault feature images. Then we build a FCNN model that integrates the 1DCNN and 2DCNN, where the original 1D fault data is the input of the 1DCNN model, and the feature images obtained by GADF transformation are used as the input of 2DCNN. Multiple convolution and pooling operations are performed on each of these inputs to extract the features. Next these feature vectors are spliced in the convergence layer, and the fully connected layers and the Softmax layers are finally used to attain the classification of aircraft EHA faults. Furthermore, the multi-strategy hybrid particle swarm optimization (MSPSO) algorithm is applied to optimize the FCNN to obtain a better combination of FCNN hyperparameters; MSPSO incorporates various strategies, including an initialization strategy based on homogenization and randomization, and an adaptive inertia weighting strategy, etc. The experimental result indicates that the FCNN model optimized by MSPSO achieves an accuracy of 96.86% for identifying typical faults of the aircraft EHA, respectively, higher than the 1DCNN and the 2DCNN by about 16.5% and 5.7%. By comparing with LeNet-5, GoogleNet, AlexNet, and GRU, the FCNN model presents the highest diagnostic accuracy, less time in training and testing. The comprehensive performance of the proposed model is demonstrated to be much stronger. Additionally, the FCNN model improved by MSPSO has a higher accuracy rate when compared to PSO.