MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization
Journal Article

Fault Diagnosis Method for Aircraft EHA Based on FCNN and MSPSO Hyperparameter Optimization

2022
Request Book From Autostore and Choose the Collection Method
Overview
Contrapose the highly integrated, multiple types of faults and complex working conditions of aircraft electro hydrostatic actuator (EHA), to effectively identify its typical faults, we propose a fault diagnosis method based on fusion convolutional neural networks (FCNN). First, the aircraft EHA fault data is encoded by gram angle difference field (GADF) to obtain the fault feature images. Then we build a FCNN model that integrates the 1DCNN and 2DCNN, where the original 1D fault data is the input of the 1DCNN model, and the feature images obtained by GADF transformation are used as the input of 2DCNN. Multiple convolution and pooling operations are performed on each of these inputs to extract the features. Next these feature vectors are spliced in the convergence layer, and the fully connected layers and the Softmax layers are finally used to attain the classification of aircraft EHA faults. Furthermore, the multi-strategy hybrid particle swarm optimization (MSPSO) algorithm is applied to optimize the FCNN to obtain a better combination of FCNN hyperparameters; MSPSO incorporates various strategies, including an initialization strategy based on homogenization and randomization, and an adaptive inertia weighting strategy, etc. The experimental result indicates that the FCNN model optimized by MSPSO achieves an accuracy of 96.86% for identifying typical faults of the aircraft EHA, respectively, higher than the 1DCNN and the 2DCNN by about 16.5% and 5.7%. By comparing with LeNet-5, GoogleNet, AlexNet, and GRU, the FCNN model presents the highest diagnostic accuracy, less time in training and testing. The comprehensive performance of the proposed model is demonstrated to be much stronger. Additionally, the FCNN model improved by MSPSO has a higher accuracy rate when compared to PSO.