Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "hingganite"
Sort by:
Minasgeraisite-(Y) discredited as an ordered intermediate between datolite and hingganite-(Y)
Minasgeraisite-(Y) is discredited on the basis of it being an ordered intermediate between datolite and hingganite-(Y) (IMA-CNMNC Proposal 23-F). An idealised formula is (Ca2Y2)∎2(Be2B2)Si4O16(OH)4, which corresponds to Ca2∎B2Si2O8(OH)2 (datolite) + Y2∎Be2Si2O8(OH)2 (hingganite-(Y)). The type material is rich in Bi, the Bi-richest portion yet discovered from the type locality is shown to be an intermediate member between datolite, hingganite-(Y) and a hypothetical end-member phase yet to be found of composition Bi2∎Be2Si2O8(OH)2. Minasgeraisite-(Y) has a different space group to datolite and hingganite-(Y). This lowering of symmetry to an acentric triclinic system is caused by different element occupancies on the A site of the gadolinite supergroup structure, which for minasgeraisite-(Y) becomes four individual sites. Such an order-disorder of elements is not considered as species-defining criteria despite the change in space group. Therefore, minasgeraisite-(Y) is discredited.
Monazite-(Gd), a new Gd-dominant mineral of the monazite group from the Zimná Voda REE-U-Au quartz vein, Prakovce, Western Carpathians, Slovakia
Monazite-(Gd), ideally GdPO4, is a new mineral of the monazite group. It was discovered near Prakovce-Zimná Voda, ∼23 km WNW of Kosice, Western Carpathians, Slovakia. It forms anhedral domains (≤100 µm, mostly 10-50 µm in size), in close association with monazite-(Sm), Gd-bearing xenotime-(Y), Gd-bearing hingganite-(Y), fluorapatite and uraninite. All these minerals are hosted in a REE-U-Au quartz-muscovite vein, hosted in phyllites in an exocontact to granites. The density calculated using the average empirical formula and unit-cell parameters is 5.55 g/cm3. The average chemical composition measured by means of electron microprobe is as follows (wt.%): P2O5 29.68, As2O5 0.15, SiO2 0.07, ThO2 0.01, UO2 0.04, Y2O3 1.30, La2O3 3.19, Ce2O3 6.93, Pr2O3 1.12, Nd2O3 10.56, Sm2O3 17.36, Eu2O3 1.49, Gd2O3 22.84, Tb2O3 1.57, Dy2O3 2.27, CaO 0.21, total 99.67. The corresponding empirical formula calculated on the basis of 4 oxygen atoms is: (Gd0.30Sm0.24Nd0.15Ce0.10La0.05Dy0.03Y0.03Tb0.02Eu0.02 Pr0.02Ca0.01)0.98P1.01O4. The ideal formula is GdPO4. The monazite-type structure has been confirmed by micro-Raman spectroscopy and selected-area electron diffraction. Monazite-(Gd) is monoclinic, space group P21/n, a = 6.703(1) Å, b = 6.914(1) Å, c = 6.383(1) Å, β = 103.8(1)°, V = 287.3(1) Å3 and Z = 4. The middle REE enrichment of monazite-(Gd) is shared with the associated Gd-bearing xenotime-(Y) to 'xenotime-(Gd)' and Gd-bearing hingganite-(Y). This exotic REE signature and precipitation of Gd-bearing mineral assemblage is a product of selective complexing and enrichment in middle REE in low-temperature hydrothermal fluids by alteration of primary uraninite, brannerite and fluorapatite on a micro-scale. The new mineral is named as an analogue of monazite-(La), monazite-(Ce), monazite-(Nd) and monazite-(Sm) but with Gd dominant among the REE.
Re-investigation of 'minasgeraisite-(y)' from the Jaguaraçu Pegmatite, Brazil and high-temperature crystal chemistry of gadolinite-supergroup minerals
The chemical composition (including B, Be and Li), the Raman spectrum and the crystal-structure evolution (at the temperature range 27-1000°C) of a Mn-bearing, Bi-rich gadolinite-subgroup mineral from the Jaguaraçu Pegmatite, Brazil (type-locality of minasgeraisite-(Y)) was studied. Elemental mapping revealed that the crystal investigated has complex chemical zonation with various Bi (∼8-24 wt.% Bi2O3), Ca (∼8-10 wt.% CaO) and Y (∼11-17 wt.% Y2O3) content. The sample investigated has all the specific features of the chemical composition of minasgeraisite-(Y), except Ca excess and, thus, should be considered as hingganite-(Y). The Raman spectrum of the sample under study has bands at 140, 179, 243, 350, 446, 519, 559, 625, 902, 973, 3224, 3353, 3532 and 3763 cm-1, and is similar to that of hingganite-(Y) / -(Nd). Crystal-structure refinement confirmed that the crystal in question should be considered as hingganite-(Y) and is in line with the previously obtained data on gadolinite-subgroup minerals from the Jaguaraçu Pegmatite. High-temperature single-crystal X-ray diffraction studies revealed that the mineral starts to decompose above 800°C. We can conclude that beryllosilicates are most stable at high-temperature conditions within the gadolinite supergroup and that species with a higher M-site occupancy have higher stability upon heating.
Hellandite-(Y)–hingganite-(Y)–fluorapatite retrograde coronae: a novel type of fluid-induced dissolution–reprecipitation breakdown of xenotime-(Y) in the metagranites of Fabova Hoľa, Western Carpathians, Slovakia
Two contrasting reaction coronae were developed around rare earth element (REE) accessory phosphates in Variscan metagranitic rocks, which have been overprinted by Alpine blastomylonitisation from the Fabova Hol'a Massif, in the Veporic Unit, Western Carpathians, Central Slovakia. The Th–U–Pb total EPMA age determination of primary magmatic monazite-(Ce) from the metagranite indicates a Carboniferous (Mississippian, Tournaisian) age of 355 ± 1.9 Ma. Monazite-(Ce) breakdown resulted in impressive, though common, fluorapatite ± Th-silicate + allanite-(Ce) + clinozoisite coronae. The alteration of xenotime-(Y) produced a novel type of secondary coronal micro-texture consisting of a massive fluorapatite mantle zone and tiny satellite crystals of hellandite-(Y) [(Ca,REE) 4 Y 2 Al□ 2 (B 4 Si 4 O 22 )(OH) 2 ] and hingganite-(Y) [Y 2 □Be 2 Si 2 O 8 (OH) 2 ] of ~1–5 μm, and rarely ≤10 μm in size. The localised occurrence of Y–B–Be silicates, which are associated closely with other secondary minerals, suggests the involvement of B and Be during the metasomatic alteration transformation of xenotime-(Y). General reactions for monazite-(Ce) and xenotime-(Y) decomposition, including the fluids involved, can be written as follows: Mnz + (Ca, Fe, Si, Al and F)-rich fluid → FAp + Ht + Aln + Czo; Xtm + (Ca, Fe, Si, Al, F, B and Be)-rich fluid → FAp + Hld + Hin + Czo. The granitic rocks underwent Early Cretaceous burial metamorphism under greenschist- to lower amphibolite-facies P – T conditions. Subsequently, Alpine post-collisional uplift and exhumation of the Veporic Unit, starting from the Late Cretaceous epoch, was accompanied by a retrograde tectono-metamorphic overprint; the activity of external fluids, caused the formation of secondary coronae minerals around monazite-(Ce) and xenotime-(Y). A portion of B (± Be) should have been liberated from the metagranite feldspars, micas, or xenotime-(Y) enriched in (Nb,Ta)BO 4 (schiavinatoite or béhierite) components. However, the principal source of B and Be in fluids necessary for the production of hellandite and hingganite, was probably of external origin from adjacent magmatic, metamorphic, or sedimentary rocks (Permian granites, rhyolites and sedimentary rocks, and Palaeozoic metapelites).
Compressibility of hingganite-(Y): high-pressure single crystal X-ray diffraction study
Behaviour of hingganite-(Y), Y 2 □Be 2 Si 2 O 8 (OH) 2 , on compression to 47 GPa has been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction at room temperature in a diamond anvil cell. In the studied pressure range no obvious phase transitions have been observed. The compression of hingganite-(Y) crystal structure is anisotropic, with b axis showing the maximal compressibility. A fit of the experimental pressure–volume data by the Birch-Murnaghan third-order equation of state yielded the bulk modulus of 131(2) GPa and its pressure first derivative of 3.5(2). The difference between high-pressure behaviour of hingganite-(Y) and structurally related datolite is governed by the different chemical nature of interlayer cations.
Low-Temperature Crystal Chemistry of Hingganite-(Y), from the Wanni Glacier, Switzerland
Hingganite from the Wanni glacier (Switzerland) was studied by means of energy dispersive and wavelength-dispersive spectroscopy, Raman spectroscopy, and low-temperature single-crystal X-ray diffraction. According to its chemical composition, the investigated mineral should be considered as hingganite-(Y). It showed a relatively high content of Gd, Dy, and Er and had limited content of lighter rare-earth element (REE), which is typical for Alpine gadolinite group minerals. The most intense Raman bands were 116, 186, 268, 328, 423, 541, 584, 725, 923, 983, 3383, and 3541 cm−1. Based on data of low-temperature [(−173)–(+7) °C] in situ single-crystal X-ray diffraction, it was shown that the hingganite-(Y) crystal structure was stable in the studied temperature range and no phase transitions occurred. Hingganite-(Y) demonstrated low volumetric thermal expansion (αV = 9(2) × 10−6 °C−1) and had a high thermal expansion anisotropy up to compression along one of the directions in the layer plane. Such behavior is caused by the shear deformations of its monoclinic unit cell.
Hingganite-(Y) from a small aplite vein in granodiorite from Oppach, Lusatian Mts., E-Germany
Crystals of hingganite-(Y) occur co-trapped in quartz crystals from miarolitic cavities in an aplite vein in the Cadomian granodiorite from Oppach/Lusatian, Germany. We describe the chemical composition and provide a reference Raman spectrum of this mineral, for which little useful spectral data has been published. In addition, we provide some inferences as to the genesis of this mineral in relationship to melt and fluid inclusions in quartz. The paragenetic sequence of minerals conserved only as small crystal inclusions in quartz, demonstrates an unusual occurrence in the Lusatian aplites, characterized by an unusual, extremely water-rich, near-supercritical melt-fluid system with high concentrations in alkali carbonates and sulfates. We propose that a sulfate-rich system was responsible for the fixation of Be and REE as hingganite-(Y), rather than the more common beryl + REE mineral assemblage. This may provide an explanation for the formation of this otherwise rare mineral
Cation order in the crystal structure of 'minasgeraisite-(Y)'; dedicated to our friend the late Luis Menezes, who brought this mineral to our attention and graciously provided a superior specimen with crystals suitable for single-crystal structure work
The crystal structure of 'minasgeraisite-(Y)', triclinic P1, a = 9.994(4), b = 7.705(3), c = 4.764(2) Å, α = 90.042(9), β = 90.218(14), γ = 90.034(9) (°), V = 366.8(5) Å3 and Z = 1, has been refined to an R1 index of 2.86% for 4170 observed (|Fo| > 4σF) reflections. Significant observed (|Fo| > 40-60 σF) reflections violate the presence of a 21-screw axis and an a-glide plane, negating the space group P21/a previously found for minerals of the gadolinite-datolite group. Averaging of the X-ray data in Laue groups 2/m and 1 gives the following agreement indices: 2/m (9.68%) and 1 (5.68%). The internal agreement index from averaging of identical reflections collected at multiple positions along the diffraction vector is significantly lower than that for the Laue group 1 Rpsi = 2.40%, where 13,109 reflections were collected, 4288 are unique for P1 symmetry, and Rpsi is based on a mean data redundancy factor of > 3. Both the data merging and an |E2-1| value of 0.773 indicate that P1 is the correct space group. The general formula for the gadolinite-datolite group is W2XZ2T2O8V2 (Z = 2) which we have expanded to 20 anions (Z = 1) to show the W-site cation ordering present in 'minasgeraisite-(Y)'. Bismuth, Ca and REE are ordered over four W sites, with Bi dominant at W1, Ca dominant at W2, and Y dominant at W3 and W4. The dominant constituent at the X sites is a vacancy, and Ca does not occur at the X sites. Significant B and Si are assigned to the Be-dominant Z sites, and the T sites are occupied by Si. The simplified 'minasgeraisite-(Y)' formula (Z = 1) is BiCa(Y,Ln)2(∎,Mn)2(Be,B,Si)4Si4O16 [(OH),O]4. 'Minasgeraisite-(Y)' should be assigned to a triclinic subgroup of the gadolinite-datolite group, and its lower symmetry suggests that Ca-substituted gadolinites and hingganites should be examined for evidence of triclinic symmetry associated with cation order at the W sites.