Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
114 result(s) for "historical-commentary"
Sort by:
Optogenetics: 10 years of microbial opsins in neuroscience
Over the past decade, modern optogenetics has emerged from the convergence of developments in microbial opsin engineering, genetic methods for targeting, and optical strategies for light delivery. In this Historical Commentary, Karl Deisseroth reflects on the optogenetic landscape, from the important steps but slow progress in the beginning to the acceleration in discovery seen in recent years. Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005–2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
NIH Image to ImageJ: 25 years of image analysis
For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
The development of cryo-EM into a mainstream structural biology technique
Single-particle cryo-electron microscopy (cryo-EM) has emerged over the last two decades as a technique capable of studying the structure of challenging systems. The author of this Commentary discusses some of the major historical landmarks in cryo-EM that have led to its present success. Single-particle cryo-electron microscopy (cryo-EM) has emerged over the last two decades as a technique capable of studying challenging systems that otherwise defy structural characterization. Recent technical advances have resulted in a 'quantum leap' in applicability, throughput and achievable resolution that has gained this technique worldwide attention. Here I discuss some of the major historical landmarks in the development of the cryo-EM field, ultimately leading to its present success.
Immunology beats cancer: a blueprint for successful translation
Immunology offers an unprecedented opportunity for the science-driven development of therapeutics. The successes of antibodies to the immunomodulatory receptor CTLA-4 and blockade of the immunoinhibitory receptor PD-1 in cancer immunotherapy, from gene discovery to patient benefit, have created a paradigm for driving such endeavors.
Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff
One hundred years ago the birth of immunology was made official by the Nobel Prize award to Elie Metchnikoff and Paul Ehrlich. Metchnikoff discovered phagocytosis by macrophages and microphages as a critical host-defense mechanism and thus is considered the father of cellular innate immunity. Ehrlich described the side-chain theory of antibody formation and the mechanisms of how antibodies neutralize toxins and induce bacterial lysis with the help of complement and thus is considered one of the fathers of humoral adaptive immunity. Despite many discordant discussions in the initial phase after these discoveries, innate and adaptive responses are now known to be complementary partners in producing robust immunity.
The yeast two-hybrid assay: still finding connections after 25 years
The idea of using hybrid proteins containing transcription factor domains to analyze protein-protein interactions was described in 1989. Over the past 25 years, this method has begun to reveal the complex protein networks that underlie cellular behavior.
A century of mass spectrometry: from atoms to proteomes
Long before mass spectrometry became an important tool for cell biology, it was yielding scientific insights in physics and chemistry. Here is a brief history of how the technology has expanded from a tool for studying atomic structure and characterizing small molecules to its current incarnation as the most powerful technique for analyzing proteomes.
The origins of NF-κB
Twenty-five years after its identification, the transcription factor NF-κB continues to attract intense effort from a large and diverse research community. Ranjan Sen offers a personal account of the discovery of NF-κB.
Seeing things: from microcinematography to live cell imaging
From histology to microcinematography, from cytochemistry to live cell imaging, the history of visualization technology in the life sciences may be understood as a series of cycles of action and reaction between static and dynamic modes of representing life.
The clonal selection theory: 50 years since the revolution
October 2007 marks the 50th anniversary of the publication of Frank Macfarlane Burnet's clonal selection theory in the Australian Journal of Science . This short article, republished at the end of this commentary, revolutionized the field of immunology.