Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
379,940
result(s) for
"instrumentation"
Sort by:
Medical-Grade ECG Sensor for Long-Term Monitoring
2020
The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor for long-term monitoring, which measures the surface potential difference between proximal electrodes near the heart, called differential ECG lead or differential lead, in short. The sensor has been certified as a class IIa medical device and is available on the market under the trademark Savvy ECG. An improvement from the user’s perspective—immediate access to the measured data—is also implemented into the design. With appropriate placement of the device on the chest, a very clear distinction of all electrocardiographic waves can be achieved, allowing for ECG recording of high quality, sufficient for medical analysis. Experimental results that elucidate the measurements from a differential lead regarding sensors’ position, the impact of artifacts, and potential diagnostic value, are shown. We demonstrate the sensors’ potential by presenting results from its various areas of application: medicine, sports, veterinary, and some new fields of investigation, like hearth rate variability biofeedback assessment and biometric authentication.
Journal Article
5G ultra-remote robot-assisted laparoscopic surgery in China
2020
Background5G communication technology has been applied to several fields in telemedicine, but its effectiveness, safety, and stability in remote laparoscopic telesurgery have not been established. Here, we conducted four ultra-remote laparoscopic surgeries on a swine model under the 5G network. The aim of the study was to investigate the effectiveness, safety, and stability of the 5G network in remote laparoscopic telesurgery.MethodsFour ultra-remote laparoscopic surgeries (network communication distance of nearly 3000 km), including left nephrectomy, partial hepatectomy, cholecystectomy, and cystectomy, were performed on a swine model with a 5G wireless network connection using a domestically produced “MicroHand” surgical robot. The average network delay, operative time, blood loss, and intraoperative complications were recorded.ResultsFour laparoscopic telesurgeries were safely performed through a 5G network, with an average network delay of 264 ms (including a mean round-trip transporting delay of 114 ms and a 1.20% data packet loss ratio). The total operation time was 2 h. The total blood loss was 25 ml, and no complications occurred during the procedures.ConclusionsUltra-remote laparoscopic surgery can be performed safely and smoothly with 5G wireless network connection using domestically produced equipment. More importantly, our model can provide insights for promoting the future development of telesurgery, especially in areas where Internet cables are difficult to lay or cannot be laid.
Journal Article
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
2014
When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.
Journal Article
Opto-VLSI devices and circuits for biomedical and healthcare applications
by
Kumar, Ankur, editor
in
Optical Devices
,
Biosensing Techniques
,
Electronics, Medical instrumentation
2024
\"The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries\"-- Provided by publisher.
3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges
by
Kurek, Mateusz
,
Jachowicz, Renata
,
Jamróz, Witold
in
3-D printers
,
Additive manufacturing
,
Drug delivery
2018
Growing demand for customized pharmaceutics and medical devices makes the impact of additive manufacturing increased rapidly in recent years. The 3D printing has become one of the most revolutionary and powerful tool serving as a technology of precise manufacturing of individually developed dosage forms, tissue engineering and disease modeling. The current achievements include multifunctional drug delivery systems with accelerated release characteristic, adjustable and personalized dosage forms, implants and phantoms corresponding to specific patient anatomy as well as cell-based materials for regenerative medicine. This review summarizes the newest achievements and challenges of additive manufacturing in the field of pharmaceutical and biomedical research that have been published since 2015. Currently developed techniques of 3D printing are briefly described while comprehensive analysis of extrusion-based methods as the most intensively investigated is provided. The issue of printlets attributes, i.e. shape and size is described with regard to personalized dosage forms and medical devices manufacturing. The undeniable benefits of 3D printing are highlighted, however a critical view resulting from the limitations and challenges of the additive manufacturing is also included. The regulatory issue is pointed as well.
Journal Article
Autonomous mobile robots for exploratory synthetic chemistry
by
Cooper, Andrew I.
,
Vijayakrishnan, Sriram
,
Szczypiński, Filip T.
in
140/131
,
639/638/541
,
639/638/549
2024
Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making
1
,
2
. Most autonomous laboratories involve bespoke automated equipment
3
–
6
, and reaction outcomes are often assessed using a single, hard-wired characterization technique
7
. Any decision-making algorithms
8
must then operate using this narrow range of characterization data
9
,
10
. By contrast, manual experiments tend to draw on a wider range of instruments to characterize reaction products, and decisions are rarely taken based on one measurement alone. Here we show that a synthesis laboratory can be integrated into an autonomous laboratory by using mobile robots
11
–
13
that operate equipment and make decisions in a human-like way. Our modular workflow combines mobile robots, an automated synthesis platform, a liquid chromatography–mass spectrometer and a benchtop nuclear magnetic resonance spectrometer. This allows robots to share existing laboratory equipment with human researchers without monopolizing it or requiring extensive redesign. A heuristic decision-maker processes the orthogonal measurement data, selecting successful reactions to take forward and automatically checking the reproducibility of any screening hits. We exemplify this approach in the three areas of structural diversification chemistry, supramolecular host–guest chemistry and photochemical synthesis. This strategy is particularly suited to exploratory chemistry that can yield multiple potential products, as for supramolecular assemblies, where we also extend the method to an autonomous function assay by evaluating host–guest binding properties.
A modular autonomous platform for general exploratory synthetic chemistry uses mobile robots to integrate an automated synthesis platform and two analysis platforms.
Journal Article