Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,917 result(s) for "maximum entropy model"
Sort by:
Prediction of the potential distribution of Chimonobambusa utilis (Poaceae, Bambusoideae) in China, based on the MaxEnt model
Chimonobambusa utilis is a unique edible bamboo species valued for its economic and nutritional benefits. However, its existence in natural habitats is at risk due to environmental shifts and human interventions. This research utilised the maximum entropy model (MaxEnt) to predict potential habitats for Ch. utilis in China, identifying key environmental factors influencing its distribution and analysing changes in suitable habitats under future climate conditions. The results show that the results of the MaxEnt model have high prediction accuracy, with an AUC (Area Under the receiver operating characteristic Curve) value of 0.997. Precipitation in the driest month (Bio14), altitude (Alt) and isothermality (Bio03) emerged as the primary environmental factors influencing the Ch. utilis distribution. Currently, the suitable habitats area for Ch. utilis is 10.55 × 10 4 km 2 . Projections for the 2050s and 2090s indicate potential changes in suitable habitats ranging from -3.79% to 10.52%. In general, the most suitable habitat area will decrease and shrink towards higher latitude areas in the future. This study provides a scientific basis for the introduction, cultivation and conservation of Ch. utilis .
Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining
With the change of technology and innovation of the current era, retrieving data and data processing becomes a more challenging task for researchers. In particular, several types of sensors and cameras are used to collect multimedia data from various resources and domains, which have been used in different domains and platforms to analyze things such as educational and communicational setups, emergency services, and surveillance systems. In this paper, we propose a robust method to predict human behavior from indoor and outdoor crowd environments. While taking the crowd-based data as input, some preprocessing steps for noise reduction are performed. Then, human silhouettes are extracted that eventually help in the identification of human beings. After that, crowd analysis and crowd clustering are applied for more accurate and clear predictions. This step is followed by features extraction in which the deep flow, force interaction matrix and force flow features are extracted. Moreover, we applied the graph mining technique for data optimization, while the maximum entropy Markov model is applied for classification and predictions. The evaluation of the proposed system showed 87% of mean accuracy and 13% of error rate for the avenue dataset, while 89.50% of mean accuracy rate and 10.50% of error rate for the University of Minnesota (UMN) dataset. In addition, it showed a 90.50 mean accuracy rate and 9.50% of error rate for the A Day on Campus (ADOC) dataset. Therefore, these results showed a better accuracy rate and low error rate compared to state-of-the-art methods.
Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era
Recently developed methods have shown considerable promise in predicting residue–residue contacts in protein 3D structures using evolutionary covariance information. However, these methods require large numbers of evolutionarily related sequences to robustly assess the extent of residue covariation, and the larger the protein family, the more likely that contact information is unnecessary because a reasonable model can be built based on the structure of a homolog. Here we describe a method that integrates sequence coevolution and structural context information using a pseudolikelihood approach, allowing more accurate contact predictions from fewer homologous sequences. We rigorously assess the utility of predicted contacts for protein structure prediction using large and representative sequence and structure databases from recent structure prediction experiments. We find that contact predictions are likely to be accurate when the number of aligned sequences (with sequence redundancy reduced to 90%) is greater than five times the length of the protein, and that accurate predictions are likely to be useful for structure modeling if the aligned sequences are more similar to the protein of interest than to the closest homolog of known structure. These conditions are currently met by 422 of the protein families collected in the Pfam database.
Spatial patterns and drivers for wildfire ignitions in California
As a key component of wildfire activities, ignition is regulated by complex interactions among climate, fuel, topography, and humans. Considerable studies have advanced our knowledge on patterns and drivers of total areas burned and fire frequency, but much is less known about wildfire ignition. To better design effective fire prevention and management strategies, it is critical to understand contemporary ignition patterns and predict the probability of wildfire ignitions from different sources. We here modeled and analyzed human- and lightning-caused ignition probability across the whole state and sub-ecoregions of California, USA. We developed maximum entropy models to estimate wildfire ignition probability and understand the complex impacts of anthropogenic and biophysical drivers, based on a historical ignition database. The models captured well the spatial patterns of human and lightning started wildfire ignitions in California. The human-caused ignitions dominated the areas closer to populated regions and along the traffic corridors. Model diagnosis showed that precipitation, slope, human settlement, and road network shaped the statewide spatial distribution of human-started ignitions. In contrast, the lightning-caused ignitions were distributed more remotely in Sierra Nevada and North Interior, with snow water equivalent, lightning strike density, and fuel amount as primary drivers. Separate region-specific model results further revealed the difference in the relative importance of the key drivers among different sub-ecoregions. Model predictions suggested spatially heterogeneous decadal changes and an overall slight decrease in ignition probability between circa 2000 and 2010. Our findings reinforced the importance of varying humans vs biophysical controls in different fire regimes, highlighting the need for locally optimized land management to reduce ignition probability.
Chinese High Resolution Satellite Data and GIS-Based Assessment of Landslide Susceptibility along Highway G30 in Guozigou Valley Using Logistic Regression and MaxEnt Model
Landslide disasters frequently occur along the highway G30 in the Guozigou Valley, the corridor of energy, material, economic and cultural exchange, etc., between Yili and other cities of China and Central Asia. However, little attention has been paid to assess the detailed landslide susceptibility of the strategically important highway, especially with high spatial resolution data and the generative presence-only MaxEnt model. Landslide susceptibility assessment (LSA) is a first and vital step for preventing and mitigating landslide hazards. The goal of the current study was to perform LSA for the landslide-prone highway G30 in Guozigou Valley, China with the aid of GIS tools and Chinese high resolution Gaofen-1 (GF-1) satellite data, and analyze and compare the performance of the maximum entropy (MaxEnt) model and logistic regression (LR). Thirty five landslides were determined in the study region, using GF-1 satellite data, official data, and field surveys. Seven landslide conditioning factors, including altitude, slope, aspect, gully density, lithology, faults density, and NDVI, were used to investigate their existing spatial relationships with landslide occurrences. The LR and MaxEnt model performance were assessed by the receiver operating characteristic curve, presenting areas under the curve equal to 0.85 and 0.94, respectively. The performance of the MaxEnt model was slightly better than that of the LR model. A landslide susceptibility map was created through reclassifying the landslides occurrence probability with the classification method of natural breaks. According to the MaxEnt model results, 3.29% and 3.82% of the study region is highly and very highly susceptible to future landslide events, respectively, with the highest landslide susceptibility along the highway. The generated landslide susceptibility map could help government agencies and decision-makers to make wise decisions for preventing or mitigating landslide hazards along the highway and design schemes of highway engineering and maintenance in Guozigou Valley, the mountainous areas.
High-order social interactions in groups of mice
Social behavior in mammals is often studied in pairs under artificial conditions, yet groups may rely on more complicated social structures. Here, we use a novel system for tracking multiple animals in a rich environment to characterize the nature of group behavior and interactions, and show strongly correlated group behavior in mice. We have found that the minimal models that rely only on individual traits and pairwise correlations between animals are not enough to capture group behavior, but that models that include third-order interactions give a very accurate description of the group. These models allow us to infer social interaction maps for individual groups. Using this approach, we show that environmental complexity during adolescence affects the collective group behavior of adult mice, in particular altering the role of high-order structure. Our results provide new experimental and mathematical frameworks for studying group behavior and social interactions. All animals need to interact with others of the same species, even if it is only to mate. To date, social behavior has been studied mainly at two extremes: detailed observation of pairs; and studies of the collective behavior of large groups, such as flocks of birds. However, to gain an understanding of social behavior in mammals will require an approach that falls between these two extremes. It will be necessary to study animals in larger groups, rather than in pairs, but also to track individuals rather than looking at the activity of the group as a whole. Now, Shemesh et al. have developed a system that can track the behavior of each of four mice with high spatial and temporal resolution as they move around freely in an arena containing ramps, nest boxes, and barriers. Because mice are largely nocturnal, Shemesh et al. dyed the animals’ fur with compounds that produced different coloured fluorescence under ultraviolet light, and then employed an automated system to accurately track each mouse during 12 hr of darkness, over a number of days. Using these data it was possible to estimate the extent to which the behavior of the group is determined by the characteristics of individual mice and how much is determined by interactions between animals. Models based solely on the behavior of individuals could not accurately describe the behavior of the group. Surprisingly, neither could models that focused on interactions between pairs of mice. Only models that included interactions between three mice gave a good approximation of the observed behavior. This shows that, even in a small group, social behavior is determined by relatively complex interactions. Shemesh et al. also found that the behavior of the mice depended on the environment in which they had been raised. Animals that had lived in larger groups and in more interesting enclosures were influenced more by pairwise interactions, and less by three-way interactions, than mice that had been raised in a standard laboratory environment. This suggests that being raised in a complex environment strengthens mouse ‘individuality’. The approach developed by Shemesh et al. could be extended to study larger groups of animals and could also be used to examine the interplay between genes, environment and other factors in shaping social interactions.
Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics
The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states. We propose a Bayesian maximum entropy model estimation (BMEM) to characterize nonlinear brain state dynamics in each individual. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data. BMEM and its energy landscape properties showed high subject specificity.
Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors
Automatic identification of human interaction is a challenging task especially in dynamic environments with cluttered backgrounds from video sequences. Advancements in computer vision sensor technologies provide powerful effects in human interaction recognition (HIR) during routine daily life. In this paper, we propose a novel features extraction method which incorporates robust entropy optimization and an efficient Maximum Entropy Markov Model (MEMM) for HIR via multiple vision sensors. The main objectives of proposed methodology are: (1) to propose a hybrid of four novel features—i.e., spatio-temporal features, energy-based features, shape based angular and geometric features—and a motion-orthogonal histogram of oriented gradient (MO-HOG); (2) to encode hybrid feature descriptors using a codebook, a Gaussian mixture model (GMM) and fisher encoding; (3) to optimize the encoded feature using a cross entropy optimization function; (4) to apply a MEMM classification algorithm to examine empirical expectations and highest entropy, which measure pattern variances to achieve outperformed HIR accuracy results. Our system is tested over three well-known datasets: SBU Kinect interaction; UoL 3D social activity; UT-interaction datasets. Through wide experimentations, the proposed features extraction algorithm, along with cross entropy optimization, has achieved the average accuracy rate of 91.25% with SBU, 90.4% with UoL and 87.4% with UT-Interaction datasets. The proposed HIR system will be applicable to a wide variety of man–machine interfaces, such as public-place surveillance, future medical applications, virtual reality, fitness exercises and 3D interactive gaming.
Risk effects of environmental factors on human brucellosis in Aksu Prefecture, Xinjiang, China, 2014–2023
The context of rapid global environmental change underscores the pressing necessity to investigate the environmental factors and high-risk areas that contribute to the occurrence of brucellosis. In this study, a maximum entropy (MaxEnt) model was employed to analyze the factors influencing brucellosis in the Aksu Prefecture from 2014 to 2023. A distributed lag nonlinear model (DLNM) was employed to investigate the lagged effect of meteorological factors on the occurrence of brucellosis. A total of 17 environmental factors were identified as affecting the distribution of brucellosis to varying degrees. The largest contributing was the normalized difference vegetation index (NDVI), followed by gross domestic product (GDP), and then meteorological factors such as average temperature, average relative humidity, and average wind speed. The receiver operating characteristic (ROC) curve demonstrated that the MaxEnt model exhibited a high degree of predictive efficacy, with an area under the curve (AUC) value of 0.921. The impact of high temperature (25℃ with a 2-month lag, RR = 3.130, 95% CI 1.642 ~ 5.965), low relative humidity (28% with a 2.5-month lag, RR = 1.795, 95% CI 1.298 ~ 2.483), and low wind speed (1.9 m/s with a 0-month lag, RR = 2.408, 95% CI 1.360 ~ 4.264) are the most significant meteorological factors associated with the incidence of brucellosis. The trends in the impact of extreme meteorological conditions on the spread of brucellosis were found to be generally consistent. Stratified analyses indicated that males were more affected by meteorological factors than females. The prevalence of brucellosis is influenced by a range of socio-economic and meteorological factors, and a multifaceted approach is necessary to prevent and control brucellosis.
Habitat for Coilia nasus in southern Zhejiang Province, China, based on a maximum entropy model
As an important fishery resource and endangered species, studying the habitat of Coilia nasus ( C. nasus ) is highly significant. This study used fishery survey data from southern Zhejiang coastal waters from 2016 to 2020, employing a maximum entropy model (MaxEnt) to map the habitat distribution of C. nasus . Model performance was evaluated using two metrics: the area under the curve (AUC) of the receiver operating characteristic curve for the training and test sets and true skill statistics (TSS). This study aimed to predict the habitat distribution of C. nasus and explore how environmental variables influence habitat suitability. The results indicated that the models for each season had strong predictive performance, with AUC values above 0.8 and TSS values exceeding 0.6, indicating that they could accurately predict the presence of C. nasus . In the study area, C. nasus was primarily found in brackish or marine waters near bays and coastal islands. Among all environmental factors, salinity (S) and bottom temperature (BOT) had the highest correlations with habitat distribution, although these correlations varied across seasons. The findings of this study provide empirical evidence and a reference for the conservation and management of C. nasus and for the designation of its protected areas.