Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
217
result(s) for
"mixed finite element simulation"
Sort by:
Mixed Finite Element Simulation with Stability Analysis for Gas Transport in Low-Permeability Reservoirs
by
Kou, Jisheng
,
El-Amin, Mohamed
,
Sun, Shuyu
in
Finite element analysis
,
low permeability reservoirs
,
mixed finite element simulation
2018
Natural gas exists in considerable quantities in tight reservoirs. Tight formations are rocks with very tiny or poorly connected pors that make flow through them very difficult, i.e., the permeability is very low. The mixed finite element method (MFEM), which is locally conservative, is suitable to simulate the flow in porous media. This paper is devoted to developing a mixed finite element (MFE) technique to simulate the gas transport in low permeability reservoirs. The mathematical model, which describes gas transport in low permeability formations, contains slippage effect, as well as adsorption and diffusion mechanisms. The apparent permeability is employed to represent the slippage effect in low-permeability formations. The gas adsorption on the pore surface has been described by Langmuir isotherm model, while the Peng-Robinson equation of state is used in the thermodynamic calculations. Important compatibility conditions must hold to guarantee the stability of the mixed method by adding additional constraints to the numerical discretization. The stability conditions of the MFE scheme has been provided. A theorem and three lemmas on the stability analysis of the mixed finite element method (MFEM) have been established and proven. A semi-implicit scheme is developed to solve the governing equations. Numerical experiments are carried out under various values of the physical parameters.
Journal Article
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
by
Bas J H van de Wiel
,
Popinet, Stéphane
,
van Heerwaarden, Chiel C
in
Adaptive algorithms
,
Atmospheric boundary layer
,
Atmospheric flows
2018
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Journal Article
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
by
Rossi, R.
,
Larese, A.
,
Oñate, E.
in
Anàlisi numèrica
,
Classical and Continuum Physics
,
Compressibility
2019
In this work a stabilized mixed formulation for the solution of non-linear solid mechanics problems in nearly-incompressible conditions is presented. In order to deal with high material deformation, an implicit Material Point Method is chosen. Such choice allows avoiding the classical limitations of the Finite Element Method, e.g., element tangling and extreme mesh distortion. The proposed mixed formulation, with displacement and pressure as primary variables, is tested through classical benchmarks in solid and geo-mechanics where a Neo-Hookean, a J2 and a Mohr-Coulomb plastic law are employed. Further, the stabilized mixed formulation is compared with a displacement-based formulation to demonstrate how the proposed approach gets better results in terms of accuracy, not only when incompressible materials are simulated, but also in the case of compressible ones.
Journal Article
Unified approach to discretization of flow in fractured porous media
by
Boon, W. M.
,
Keilegavlen, E.
,
Nordbotten, J. M.
in
Computational fluid dynamics
,
Computer simulation
,
Control methods
2019
In this paper, we introduce a mortar-based approach to discretizing flow in fractured porous media, which we term the mixed-dimensional flux coupling scheme. Our formulation is agnostic to the discretizations used to discretize the fluid flow equations in the porous medium and in the fractures, and as such it represents a unified approach to integrated fractured geometries into any existing discretization framework. In particular, several existing discretization approaches for fractured porous media can be seen as special instances of the approach proposed herein. We provide an abstract stability theory for our approach, which provides explicit guidance into the grids used to discretize the fractures and the porous medium, as dependent on discretization methods chosen for the respective domains. The theoretical results are sustained by numerical examples, wherein we utilize our framework to simulate flow in 2D and 3D fractured media using control volume methods (both two- and multi-point flux), Lagrangian finite element methods, mixed finite element methods, and virtual element methods. As expected, regardless of the ambient methods chosen, our approach leads to stable and convergent discretizations for the fractured problems considered, within the limits of the discretization schemes.
Journal Article
Two-Dimensional Mesoscale Finite Element Modeling of Concrete Damage and Failure
by
Najafi Koopas, Rasoul
,
Lammering, Rolf
,
Rauter, Natalie
in
2D mesoscale model of concrete materials
,
Aggregates
,
Algorithms
2023
Methodologies are developed for analyzing failure initiation and crack propagation in highly heterogeneous concrete mesostructures. Efficient algorithms are proposed in Python to generate and pack geometric features into a continuous phase. The continuous phase represents the mortar matrix, while the aggregates and voids of different sizes represent the geometric features randomly distributed within the matrix. The cohesive zone model (CZM) is utilized to investigate failure initiation and crack propagation in mesoscale concrete specimens. Two-dimensional zero-thickness cohesive interface elements (CIEs) are generated at different phases of the concrete mesostructure: within the mortar matrix, aggregates, and at the interfacial transition zone (ITZ). Different traction–separation laws (TSL) are assigned to different phases to simulate potential crack paths in different regions of the mesoscale concrete specimen. The mesoscale finite element simulations are verified using experimental results from the literature, with a focus on implementing mixed-mode fracture and calibrating its corresponding parameters with respect to the experimental data. In addition, the current study addresses the limited exploration of void effects in mesoscale concrete simulations. By investigating voids of diverse sizes and volume fractions, this research sheds light on their influence on the mechanical behavior of concrete materials. The algorithms for generating cohesive interface elements and concrete microstructures are described in detail and can be easily extended to more complex states. This methodology provides an effective tool for the mesostructural optimization of concrete materials, considering specific strength and toughness requirements.
Journal Article
A Numerical Study of Crack Mixed Mode Model in Concrete Material Subjected to Cyclic Loading
by
Hamdia, Khader M.
,
Könke, Carsten
,
Alrayes, Omar
in
Brittle materials
,
Computer simulation
,
Concrete
2023
In quasi-brittle materials such as concrete, numerical methods are frequently used to simulate the crack propagation for monotonic loading. However, further research and action are required to better understand the fracture properties under cyclic loading. For this purpose, in this study, we present numerical simulations of mixed-mode crack propagation in concrete using the scaled boundary finite element method (SBFEM). The crack propagation is developed based on a cohesive crack approach combined with the thermodynamic framework of a constitutive concrete model. For validation, two benchmark crack-mode examples are modelled under monotonic and cyclic loading conditions. The numerical results are compared against the results from available publications. Our approach revealed good consistency compared to the test measurements from the literature. The damage accumulation parameter was the most influential variable on the load-displacement results. The proposed method can provide a further investigation of crack growth propagation and damage accumulation for cyclic loading within the SBFEM framework.
Journal Article
Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas
2021
Strong offshore wind events (SOWEs) occur frequently near the Antarctic coast during austral winter. These wind events are typically associated with passage of synoptic- or meso-scale cyclones, which interact with the katabatic wind field and affect sea ice and oceanic processes in coastal polynyas. Based on numerical simulations from the coupled Finite Element Sea-ice Ocean Model (FESOM) driven by the CORE-II forcing, two coastal polynyas along the East Antarctica coast––the Prydz Bay Polynya and the Shackleton Polynya are selected to examine the response of sea ice and oceanic properties to SOWEs. In these polynyas, the southern or western flanks of cyclones play a crucial role in increasing the offshore winds depending on the local topography. Case studies for both polynyas show that during SOWEs, when the wind speed is 2–3 times higher than normal values, the offshore component of sea ice velocity can increase by 3–4 times. Sea ice concentration can decrease by 20–40%, and sea ice production can increase up to two to four folds. SOWEs increase surface salinity variability and mixed layer depth, and such effects may persist for 5–10 days. Formation of high salinity shelf water (HSSW) is detected in the coastal regions from surface to 800 m after 10–15 days of the SOWEs, while the HSSW features in deep layers exhibit weak response on the synoptic time scale. HSSW formation averaged over winter is notably greater in years with longer duration of SOWEs.
Journal Article
A phase-field model for fractures in nearly incompressible solids
by
Wollner, Winnifried
,
Mang, Katrin
,
Wick, Thomas
in
Classical and Continuum Physics
,
Computational fluid dynamics
,
Computational Science and Engineering
2020
Within this work, we develop a phase-field description for simulating fractures in nearly incompressible materials. It is well-known that low-order approximations generally lead to volume-locking behaviors. We propose an approach that builds on a mixed form of the displacement equation with two unknowns: a displacement field and a hydro-static pressure variable. Corresponding function spaces have to be chosen properly. On the discrete level, stable Taylor–Hood elements are employed for the displacement-pressure system. Two additional variables describe the phase-field solution and the crack irreversibility constraint. Therefore, the final system contains four variables: displacements, pressure, phase-field, and a Lagrange multiplier. The resulting discrete system is nonlinear and solved monolithically with a Newton-type method. Our proposed model is demonstrated by means of several numerical studies based on three numerical tests. First, different finite element choices are compared in order to investigate the influence of higher-order elements in the proposed settings. Further, numerical results including spatial mesh refinement studies and variations in Poisson’s ratio approximating the incompressible limit, are presented.
Journal Article
An enhanced stress resultant plasticity model for shell structures with application in sheet metal roll forming
by
Vetyukov, Yury
,
Scheidl, Jakob
,
Kocbay, Emin
in
Advanced manufacturing technologies
,
Elastoplasticity
,
Finite element method
2024
The proposed Kirchhoff-Love shell stress resultant plasticity model extends a previously reported model for plates by complementing the constitutive law of elastoplasticity with membrane effects. This enhanced model is designed for bending dominant settings with small to moderate membrane forces. It is thus implemented in a purpose-built nonlinear mixed Eulerian–Lagrangian finite element scheme for the simulation of sheet metal roll forming. Numerical experiments by imposing artificial strain histories on a through-the-thickness element are conducted to test the model against previously reported stress resultant plasticity models and to validate it against the traditional continuum plasticity approach that features an integration of relations of elastoplasticity in a set of grid points distributed over the thickness. Results of actual roll forming simulations demonstrate the practicality in comparison to the computationally more expensive continuum plasticity approach.
Journal Article
Evaluating the validity of the cohesive zone model in mixed mode I + III fracture of Al-alloy 2024-T3 adhesive joints using DBM-DCB tests
by
Rostampoureh, Aslan
,
Jahanshahi, Soheil
,
Aalami, M. R.
in
Accuracy
,
Adhesive bonding
,
Adhesive joints
2023
Recently, numerous papers have been conducted to study the fracture mechanism of adhesively bonded joints in mixed mode I + II fracture. Nevertheless, the lack of an efficient fixture to capture mixed mode I + III fracture is seen in these studies. The first aim of this paper is representing a fixture that provides pure fracture modes I and III and different combinations of these modes. In the next parts of the paper, this testing configuration has been used to evaluate the accuracy of the cohesive zone modeling (CZM) in predicting the mixed mode I + III fracture at the adhesively bonded structures. A series of fracture tests and finite element simulations have been conducted on the adhesively bonded double cantilever beam specimens using the suggested fixture to determine the cohesive laws of the Araldite 2015 adhesive under mixed mode I + III loading situation. The cohesive laws have been calculated through a direct method from the experimental examinations and implemented in the FEM simulations of the tests. Eventually, the comparison between force-crack opening displacement curves resulting from the experimental tests and the numerical simulations in various combinations of the modes I and III loading states demonstrate the accuracy of the cohesive model in these loading conditions.
Journal Article