Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
by
Rossi, R.
, Larese, A.
, Oñate, E.
, Iaconeta, I.
in
Anàlisi numèrica
/ Classical and Continuum Physics
/ Compressibility
/ Computational fluid dynamics
/ Computational Science and Engineering
/ Computer simulation
/ Deformation
/ Engineering
/ Finite element method
/ Física
/ Física de l'estat sòlid
/ Matemàtiques i estadística
/ Materials
/ Mathematical models
/ Mechanical properties
/ Mechanics
/ Mètodes en elements finits
/ Mètodes numèrics
/ Original Paper
/ Particle methods Nonlinear Finite Element Method Implicit MPM Mixed formulation
/ Propietats mecàniques
/ Solid mechanics
/ Sòlids
/ Tangling
/ Theoretical and Applied Mechanics
/ Àrees temàtiques de la UPC
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
by
Rossi, R.
, Larese, A.
, Oñate, E.
, Iaconeta, I.
in
Anàlisi numèrica
/ Classical and Continuum Physics
/ Compressibility
/ Computational fluid dynamics
/ Computational Science and Engineering
/ Computer simulation
/ Deformation
/ Engineering
/ Finite element method
/ Física
/ Física de l'estat sòlid
/ Matemàtiques i estadística
/ Materials
/ Mathematical models
/ Mechanical properties
/ Mechanics
/ Mètodes en elements finits
/ Mètodes numèrics
/ Original Paper
/ Particle methods Nonlinear Finite Element Method Implicit MPM Mixed formulation
/ Propietats mecàniques
/ Solid mechanics
/ Sòlids
/ Tangling
/ Theoretical and Applied Mechanics
/ Àrees temàtiques de la UPC
2019
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
by
Rossi, R.
, Larese, A.
, Oñate, E.
, Iaconeta, I.
in
Anàlisi numèrica
/ Classical and Continuum Physics
/ Compressibility
/ Computational fluid dynamics
/ Computational Science and Engineering
/ Computer simulation
/ Deformation
/ Engineering
/ Finite element method
/ Física
/ Física de l'estat sòlid
/ Matemàtiques i estadística
/ Materials
/ Mathematical models
/ Mechanical properties
/ Mechanics
/ Mètodes en elements finits
/ Mètodes numèrics
/ Original Paper
/ Particle methods Nonlinear Finite Element Method Implicit MPM Mixed formulation
/ Propietats mecàniques
/ Solid mechanics
/ Sòlids
/ Tangling
/ Theoretical and Applied Mechanics
/ Àrees temàtiques de la UPC
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
Journal Article
A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics
2019
Request Book From Autostore
and Choose the Collection Method
Overview
In this work a stabilized mixed formulation for the solution of non-linear solid mechanics problems in nearly-incompressible conditions is presented. In order to deal with high material deformation, an implicit Material Point Method is chosen. Such choice allows avoiding the classical limitations of the Finite Element Method, e.g., element tangling and extreme mesh distortion. The proposed mixed formulation, with displacement and pressure as primary variables, is tested through classical benchmarks in solid and geo-mechanics where a Neo-Hookean, a J2 and a Mohr-Coulomb plastic law are employed. Further, the stabilized mixed formulation is compared with a displacement-based formulation to demonstrate how the proposed approach gets better results in terms of accuracy, not only when incompressible materials are simulated, but also in the case of compressible ones.
Publisher
Springer Berlin Heidelberg,Springer,Springer Nature B.V
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.