Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,687
result(s) for
"molecular diagnostic techniques"
Sort by:
Evolution of Translational Omics
by
Nass, Sharly J
,
Micheel, Christine M
,
Omenn, Gilbert S
in
Analysis
,
Bioinformatics
,
Biomolecules
2012
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
Rapid isothermal amplification and portable detection system for SARS-CoV-2
by
Ganguli, Anurup
,
Sun, Fu
,
Valera, Enrique
in
Assaying
,
Betacoronavirus - genetics
,
Betacoronavirus - pathogenicity
2020
The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.
Journal Article
Molecular genetic testing and the future of clinical genomics
by
Katsanis, Nicholas
,
Katsanis, Sara Huston
in
Agriculture
,
Animal Genetics and Genomics
,
Animals
2013
Key Points
Clinical molecular genetic testing is transforming personalized medicine and is appropriate for a range of applications, such as rare disease diagnostics and predictive testing for common disorders.
Whole-exome and whole-genome sequencing may become a first-line clinical test for some naive diagnostic cases, but classic genetic tests will continue to be used for the high analytical sensitivity of specific defects and for the confirmation of genome findings.
There remains no single test to detect the wide array of genetic defects that may be inherited or arise
de novo
; clinical diagnostics requires multiple approaches to determine a causal genetic defect.
Although genome sequencing may transform diagnostic approaches in large academic medical centres, access to expensive and sophisticated tests are not universal. Genetic testing must be available globally through validated simple technologies for molecular diagnostics (such as direct PCR, linkage analysis or multiplex ligation-dependent probe amplification).
The greatest challenge to clinical genomics is the reliable interpretation of the multiple and novel variants found through genome sequencing. Pathogenicity of genetic variants can be examined with bioinformatics prediction approaches, protein stability studies, transcriptional activity studies and allele- and/or gene-specific animal models.
As broader genomic information becomes available to providers and patients, partnerships will develop to convey patient-centred data, including incidental findings. The regulatory environment must adapt to the coming volume of genomic information to maximize benefit to patients and health-care systems and to match the expectations of the patient population with regard to these technologies.
The authors review current technologies for clinical genetic testing. Moves are being made towards whole-genome and whole-exome sequencing in the clinic, although other technologies will continue to be of value.
Genomic technologies are reaching the point of being able to detect genetic variation in patients at high accuracy and reduced cost, offering the promise of fundamentally altering medicine. Still, although scientists and policy advisers grapple with how to interpret and how to handle the onslaught and ambiguity of genome-wide data, established and well-validated molecular technologies continue to have an important role, especially in regions of the world that have more limited access to next-generation sequencing capabilities. Here we review the range of methods currently available in a clinical setting as well as emerging approaches in clinical molecular diagnostics. In parallel, we outline implementation challenges that will be necessary to address to ensure the future of genetic medicine.
Journal Article
Xpert MTB/RIF Ultra versus Xpert MTB/RIF for the diagnosis of tuberculous meningitis: a prospective, randomised, diagnostic accuracy study
by
Trinh, Dong Huu Khanh
,
Tan, Le Van
,
Donovan, Joseph
in
Adults
,
Cerebrospinal fluid
,
Diagnosis
2020
Xpert MTB/RIF Ultra (Xpert Ultra) might have higher sensitivity than its predecessor, Xpert MTB/RIF (Xpert), but its role in tuberculous meningitis diagnosis is uncertain. We aimed to compare Xpert Ultra with Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults.
In this prospective, randomised, diagnostic accuracy study, adults (≥16 years) with suspected tuberculous meningitis from a single centre in Vietnam were randomly assigned to cerebrospinal fluid testing by either Xpert Ultra or Xpert at baseline and, if treated for tuberculous meningitis, after 3–4 weeks of treatment. Test performance (sensitivity, specificity, and positive and negative predictive values) was calculated for Xpert Ultra and Xpert and compared against clinical and mycobacterial culture reference standards. Analyses were done for all patients and by HIV status.
Between Oct 16, 2017, and Feb 10, 2019, 205 patients were randomly assigned to Xpert Ultra (n=103) or Xpert (n=102). The sensitivities of Xpert Ultra and Xpert for tuberculous meningitis diagnosis against a reference standard of definite, probable, and possible tuberculous meningitis were 47·2% (95% CI 34·4–60·3; 25 of 53 patients) for Xpert Ultra and 39·6% (27·6–53·1; 21 of 53) for Xpert (p=0·56); specificities were 100·0% (95% CI 92·0–100·0; 44 of 44) and 100·0% (92·6–100·0; 48 of 48), respectively. In HIV-negative patients, the sensitivity of Xpert Ultra was 38·9% (24·8–55·1; 14 of 36) versus 22·9% (12·1–39·0; eight of 35) by Xpert (p=0·23). In HIV co-infected patients, the sensitivities were 64·3% (38·8–83·7; nine of 14) for Xpert Ultra and 76·9% (49·7–91·8; ten of 13) for Xpert (p=0·77). Negative predictive values were 61·1% (49·6–71·5) for Xpert Ultra and 60·0% (49·0–70·0) for Xpert. Against a reference standard of mycobacterial culture, sensitivities were 90·9% (72·2–97·5; 20 of 22 patients) for Xpert Ultra and 81·8% (61·5–92·7; 18 of 22) for Xpert (p=0·66); specificities were 93·9% (85·4–97·6; 62 of 66) and 96·9% (89·5–91·2; 63 of 65), respectively. Six (22%) of 27 patients had a positive test by Xpert Ultra after 4 weeks of treatment versus two (9%) of 22 patients by Xpert.
Xpert Ultra was not statistically superior to Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults. A negative Xpert Ultra or Xpert test does not rule out tuberculous meningitis. New diagnostic strategies are urgently required.
Wellcome Trust and the Foundation for Innovative New Diagnostics.
Journal Article
Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics
by
Geyer, Chelsie
,
Weinstock, George M.
,
Goldberg, Brittany
in
Antibiotics
,
Antimicrobial agents
,
Bacteria
2015
Next-generation DNA sequencing (NGS) has progressed enormously over the past decade, transforming genomic analysis and opening up many new opportunities for applications in clinical microbiology laboratories. The impact of NGS on microbiology has been revolutionary, with new microbial genomic sequences being generated daily, leading to the development of large databases of genomes and gene sequences. The ability to analyze microbial communities without culturing organisms has created the ever-growing field of metagenomics and microbiome analysis and has generated significant new insights into the relation between host and microbe. The medical literature contains many examples of how this new technology can be used for infectious disease diagnostics and pathogen analysis. The implementation of NGS in medical practice has been a slow process due to various challenges such as clinical trials, lack of applicable regulatory guidelines, and the adaptation of the technology to the clinical environment. In April 2015, the American Academy of Microbiology (AAM) convened a colloquium to begin to define these issues, and in this document, we present some of the concepts that were generated from these discussions.
Journal Article
Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA
2020
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and accurate nucleic acid detection at the point of care. Here, we report an amplification-free nucleic acid immunoassay, implemented on a lateral flow strip, for the fluorescence detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in less than one hour. The assay uses DNA probes that are designed to bind to the conserved open reading frame 1ab (ORF1ab), envelope protein (E) and the nucleocapsid (N) regions of the SARS-CoV-2 genome, and a fluorescent-nanoparticle-labelled monoclonal antibody that binds to double-stranded DNA–RNA hybrids. In a multi-hospital randomized double-blind trial involving 734 samples (593 throat swabs and 141 sputum) provided by 670 individuals, the assay achieved sensitivities of 100% and specificities of 99% for both types of sample (ground truth was determined using quantitative PCR with reverse transcription). The inexpensive amplification-free detection of SARS-CoV-2 RNA should facilitate the rapid diagnosis of COVID-19 at the point of care.
A nucleic acid immunoassay implemented on a lateral flow strip accurately detects SARS-CoV-2 RNA in less than one hour via a fluorescence readout.
Journal Article
The importance of molecular diagnostics for infectious diseases in low-resource settings
2021
In settings with limited resources and a wide range of possible etiologies, molecular technologies offer an effective solution for infectious disease diagnostics, because they are agile, fast and flexible. Health systems that routinely use molecular diagnostics will achieve economies of scale, maximize limited expertize and rapidly respond to new threats.
Journal Article
Label-free capacitive assaying of biomarkers for molecular diagnostics
by
Santos, Adriano
,
Bueno, Paulo R.
,
Garrote, Beatriz L.
in
631/1647/1888
,
631/1647/2196/2197
,
639/638/11/511
2020
The label-free analysis of biomarkers offers important advantages in developing point-of-care (PoC) biosensors. In contrast to label-based methodologies, such as ELISA, label-free analysis enables direct detection of targets without additional steps and labeled reagents. Nonetheless, label-free approaches require high sensitivity to detect the intrinsic features of a biomarker and low levels of nonspecific signals. Electrochemical capacitance,
C
μ
¯
, is a feature of electroactive nanoscale films that can be measured using electrochemical impedance spectroscopy.
C
μ
¯
is promising as an electrochemical transducing signal for the development of high-sensitivity, reagentless and label-free molecular diagnostic assays. We used a proprietary ferrocene (Fc)-tagged peptide that is able to self-assemble onto gold electrodes (thicknesses <2 nm) to which any biological receptor can be coupled. When coupled with biological receptors (e.g., a monoclonal antibody),
C
μ
¯
exhibited by the redox-tagged peptide changes as a function of the target concentration. We provide herein the steps for the qualitative and quantitative detection of dengue non-structural protein 1 (NS1) biomarker. Detection of NS1 can be used to diagnose dengue virus infection, which causes epidemics each year in tropical and subtropical regions of the world. Including the pre-treatment of the electrode surface, the analysis takes ~25 h. This time can be reduced to minutes if the electrode surface is fabricated separately, demonstrating that
C
μ
¯
is promising for PoC applications. We hope this protocol will serve as a reference point for researchers and companies that intend to further develop capacitive devices for molecular diagnostic assays.
Label-free and reagentless analysis of biomarkers is ideal for point-of-care diagnostics. In this protocol, changes in electrochemical capacitance resulting from biomarker binding to an electrode coated with a biological receptor are detected.
Journal Article
Low saliva pH can yield false positives results in simple RT-LAMP-based SARS-CoV-2 diagnostic tests
by
Chernoff, Jonathan
,
Uribe-Alvarez, Cristina
,
Baldwin, Don A.
in
Antibodies
,
Antigens
,
Biology and life sciences
2021
Diagnosis of any infectious disease is vital for opportune treatment and to prevent dissemination. RT-qPCR tests for detection of SARS-CoV-2, the causative agent for COVID-19, are ideal in a hospital environment. However, mass testing requires cheaper and simpler tests, especially in settings that lack sophisticated machinery. The most common current diagnostic method is based on nasopharyngeal sample collection, RNA extraction, and RT-qPCR for amplification and detection of viral nucleic acids. Here, we show that samples obtained from nasopharyngeal swabs in VTM and in saliva can be used with or without RNA purification in an isothermal loop-mediated amplification (LAMP)-based assay, with 60–93% sensitivity for SARS-CoV-2 detection as compared to standard RT-qPCR tests. A series of simple modifications to standard RT-LAMP published methods to stabilize pH fluctuations due to salivary acidity resulted in a significant improvement in reliability, opening new avenues for efficient, low-cost testing of COVID-19 infection.
Journal Article
Clinical impact and cost-consequence analysis of ePlex® blood culture identification panels for the rapid diagnosis of bloodstream infections: a single-center randomized controlled trial
2024
PurposeTo assess clinical impact and perform cost-consequence analysis of the broadest multiplex PCR panels available for the rapid diagnosis of bloodstream infections (BSI).MethodsSingle-center, randomized controlled trial conducted from June 2019 to February 2021 at a French University hospital with an institutional antimicrobial stewardship program. Primary endpoint was the percentage of patients with optimized antimicrobial treatment 12 h after transmission of positivity and Gram stain results from the first positive BC.ResultsThis percentage was significantly higher in the multiplex PCR (mPCR) group (90/105 = 85.7% %, CI95% [77.5 ; 91.8] vs. 68/107 = 63.6%, CI95% [53.7 ; 72.6]; p < 10− 3) at interim analysis, resulting in the early termination of the study after the inclusion of 309 patients. For patients not optimized at baseline, the median time to obtain an optimized therapy was much shorter in the mPCR group than in the control group (6.9 h, IQR [2.9; 17.8] vs. 26.4 h, IQR [3.4; 47.5]; p = 0.001). Early optimization of antibiotic therapy resulted in a non-statistically significant decrease in mortality from 12.4 to 8.8% (p = 0.306), with a trend towards a shorter median length of stay (18 vs. 20 days; p = 0.064) and a non-significant reduction in the average cost per patient of €3,065 (p = 0.15). mPCR identified all the bacteria present in 88% of the samples.ConclusionDespite its higher laboratory cost, the use of multiplex PCR for BSI diagnosis leads to early-optimised therapy, seems cost-effective and could reduce mortality and length of stay. Their impact could probably be improved if implemented 24/7.
Journal Article