Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,662
result(s) for
"nucleocapsid"
Sort by:
Structure and assembly of the Ebola virus nucleocapsid
by
Noda, Takeshi
,
Koehler, Alexander
,
Clarke, Mairi
in
101/28
,
631/326/596/2041
,
631/326/596/2042
2017
Application of cryo-electron tomography and subtomogram averaging to determine the structure of the Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies.
Assembling Ebola's box
The Ebola virus nucleocapsid—a protein shell—encloses, or 'encapsidates', the viral genome and acts as a scaffold for virus assembly and as a template for genome replication. John Briggs and colleagues use cryo-electron tomography to solve the structure of the nucleocapsid of the Ebola virus. They use the structures of the Ebola virus nucleocapsid within intact viruses and recombinant assemblies to propose a model for viral RNA encapsidation and accessory protein recruitment.
Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever
1
. Filoviruses are within the order Mononegavirales
2
, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein–nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein
3
,
4
,
5
,
6
, and cryo-electron microscopy of nucleocapsid
7
,
8
,
9
,
10
,
11
,
12
or nucleocapsid-like structures
11
,
12
,
13
. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.
Journal Article
Nucleocapsid Structure of Negative Strand RNA Virus
by
Luo, Ming
,
Terrell, James Ross
,
Mcmanus, Shelby Ashlyn
in
animal pathogens
,
capsid protein motif
,
cofactor
2020
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein–RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein–RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Journal Article
SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load
2022
Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. We show that two consecutive mutations (R203K/G204R) in the nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found increased interaction of GSK3A kinase simultaneously with hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein. Furthermore, the host cell transcriptome analysis suggests that the mutant N protein produces dysregulated interferon response genes. Here, we provide crucial information in linking the R203K/G204R mutations in the N protein to modulations of host-virus interactions and underline the potential of the nucleocapsid protein as a drug target during infection.
In this study, the authors sequence 892 SARS-CoV-2 genomes from Saudi Arabia and describe population dynamics and importations into the country. They identify a nucleocapsid protein mutation associated with increased viral load and host interactions and characterise its role through biochemical analyses.
Journal Article
A core network in the SARS-CoV-2 nucleocapsid NTD mediates structural integrity and selective RNA-binding
by
Becker, Matthias A.
,
Günther, Sebastian
,
Schwalbe, Harald
in
101/6
,
631/45/535/878/1263
,
631/45/612/1230
2024
The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive. Similarly, the molecular impact of nucleocapsid NTD mutations that have emerged since 2019 has not yet been fully explored. Using crystallography and solution NMR, we investigate how NTD mutations influence structural integrity and RNA-binding. We find that both features rely on a core network of residues conserved in
Betacoronaviruses
, crucial for protein stability and communication among flexible loop-regions that facilitate RNA-recognition. Our comprehensive structural analysis demonstrates that contacts within this network guide selective RNA-interactions. We propose that the core network renders the NTD evolutionarily robust in stability and plasticity for its versatile RNA processing roles.
The authors use solution-state NMR and X-ray crystallography to study mutations in the SARS-CoV-2 Nucleocapsid NTD, uncovering a network essential for protein integrity and the selectively of RNA binding.
Journal Article
Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules
by
Bayarri-Olmos, Rafael
,
Paraboschi, Elvezia Maria
,
Duga Stefano
in
Antiviral activity
,
Antiviral drugs
,
Complement activation
2022
The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.Stravalaci et al. examined recognition of SARS-CoV-2 by human soluble innate pattern recognition receptor. They report that pentraxin 3 and mannose-binding protein recognize viral nucleoprotein and spike, respectively. Mannose-binding lectin has antiviral activity, and human genetic polymorphisms of MBL2 are associated with more severe COVID-19.
Journal Article
Affinity Tag-Free Purification of SARS-CoV-2 N Protein and Its Crystal Structure in Complex with ssDNA
2024
The nucleocapsid (N) protein is one of the four structural proteins in SARS-CoV-2, playing key roles in viral assembly, immune evasion, and stability. One of its primary functions is to protect viral RNA by forming the nucleocapsid. However, the precise mechanisms by which the N protein interacts with viral RNA and assembles into a nucleocapsid remain unclear. Compared to other SARS-CoV-2 components, targeting the N protein has several advantages: it exhibits higher sequence conservation, lower mutation rates, and stronger immunogenicity, making it an attractive target for antiviral drug development and diagnostics. Therefore, a detailed understanding of the N protein’s structure is essential for deciphering its role in viral assembly and developing effective therapeutics. In this study, we report the expression and purification of a soluble recombinant N protein, along with a 1.55 Å resolution crystal structure of its nucleic acid-binding domain (N-NTD) in complex with ssDNA. Our structure revealed new insights into the conformation and interaction of the flexible N-arm, which could aid in understanding nucleocapsid assembly. Additionally, we identified residues that are critical for ssDNA interaction.
Journal Article
Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates
2020
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Journal Article
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Journal Article
AlphaFold2 Reveals Structural Patterns of Seasonal Haplotype Diversification in SARS-CoV-2 Nucleocapsid Protein Variants
by
Caetano-Anollés, Gustavo
,
Ali, Muhammad Asif
in
Amino acid sequence
,
Asymptomatic
,
Biological diversity
2024
The COVID-19 pandemic saw the emergence of various Variants of Concern (VOCs) that took the world by storm, often replacing the ones that preceded them. The characteristic mutant constellations of these VOCs increased viral transmissibility and infectivity. Their origin and evolution remain puzzling. With the help of data mining efforts and the GISAID database, a chronology of 22 haplotypes described viral evolution up until 23 July 2023. Since the three-dimensional atomic structures of proteins corresponding to the identified haplotypes are not available, ab initio methods were here utilized. Regions of intrinsic disorder proved to be important for viral evolution, as evidenced by the targeted change to the nucleocapsid (N) protein at the sequence, structure, and biochemical levels. The linker region of the N-protein, which binds to the RNA genome and self-oligomerizes for efficient genome packaging, was greatly impacted by mutations throughout the pandemic, followed by changes in structure and intrinsic disorder. Remarkably, VOC constellations acted co-operatively to balance the more extreme effects of individual haplotypes. Our strategy of mapping the dynamic evolutionary landscape of genetically linked mutations to the N-protein structure demonstrates the utility of ab initio modeling and deep learning tools for therapeutic intervention.
Journal Article
SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls
2020
Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections
1
. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of
ORF1
) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (
n
= 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (
n
= 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (
n
= 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to ‘common cold’ human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.
SARS-CoV-2-reactive T cells were found in individuals who had recovered from SARS or COVID-19 and in unexposed donors, although with different patterns of immunoreactivity.
Journal Article