Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,705 result(s) for "omega-6 fatty acids"
Sort by:
Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids
Gut microbiota mediates the effects of diet, thereby modifying host metabolism and the incidence of metabolic disorders. Increased consumption of omega-6 polyunsaturated fatty acid (PUFA) that is abundant in Western diet contributes to obesity and related diseases. Although gut-microbiota-related metabolic pathways of dietary PUFAs were recently elucidated, the effects on host physiological function remain unclear. Here, we demonstrate that gut microbiota confers host resistance to high-fat diet (HFD)-induced obesity by modulating dietary PUFAs metabolism. Supplementation of 10-hydroxy- cis -12-octadecenoic acid (HYA), an initial linoleic acid-related gut-microbial metabolite, attenuates HFD-induced obesity in mice without eliciting arachidonic acid-mediated adipose inflammation and by improving metabolic condition via free fatty acid receptors. Moreover, Lactobacillus -colonized mice show similar effects with elevated HYA levels. Our findings illustrate the interplay between gut microbiota and host energy metabolism via the metabolites of dietary omega-6-FAs thereby shedding light on the prevention and treatment of metabolic disorders by targeting gut microbial metabolites. The gut microbiome is an important regulator of metabolic health. Here the authors show that intestinal bacteria metabolize dietary linoleic acid to 10-hydroxy- cis -12-octadecenoic acid (HYA) which confers host resistance to high fat diet-induced obesity in mice.
Omega-3 fatty acids for breast cancer prevention and survivorship
Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case–control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.
Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases
Unsaturated fatty acids, particularly omega-3 and omega-6 polyunsaturated fatty acids, have garnered increasing scientific interest due to their therapeutic potential in chronic disease management. Dietary sources such as milk provide essential unsaturated fatty acids, including linoleic acid and α-linolenic acid. Current evidence indicates that these compounds and their derivatives regulate critical physiological processes, such as neurodevelopment, visual function, immune modulation, and cardiovascular homeostasis. Their multifunctional roles encompass the structural maintenance of biological membranes, cardioprotective effects, anti-inflammatory and anti-tumor activities, and metabolic regulation. However, despite established associations between unsaturated fatty acids and chronic diseases, the mechanistic contributions of omega-3 and omega-6 polyunsaturated fatty acids to complex neuropsychiatric disorders remain poorly characterized. Furthermore, the controversial role of omega-6 polyunsaturated fatty acids in chronic disease pathogenesis necessitates urgent clarification. This review systematically examines the structural properties, molecular mechanisms, and therapeutic applications of omega-3 and omega-6 polyunsaturated fatty acids in cardiovascular diseases, diabetes, cancer, dermatological conditions, neurodegenerative disorders, and depression. By integrating recent advances in dietary science, this work aims to address knowledge gaps in their neuropsychiatric implications and refine evidence-based strategies for chronic disease intervention through optimized nutritional approaches.
Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs
Revealing the expression patterns of fatty acid and amino acid transporters as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the importance of the balance between n-6 and n-3 PUFA. A total of ninety-six finishing pigs were fed one of four diets with the ratio of 1:1, 2·5:1, 5:1 and 10:1. Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest (P< 0·05) daily weight gain, and those fed the dietary n-6:n-3 PUFA ratio of 1:1 had the largest loin muscle area (P< 0·01). The concentration of n-3 PUFA was raised as the ratio declined (P< 0·05) in the longissimus dorsi and subcutaneous adipose tissue. The contents of tryptophan, tasty amino acids and branched-chain amino acids in the longissimus dorsi were enhanced in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1–5:1. The mRNA expression level of the fatty acid transporter fatty acid transport protein-1 (FATP-1) was declined (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1–5:1, and increased (P< 0·05) in the subcutaneous adipose tissue of pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1. The expression profile of FATP-4 was similar to those of FATP-1 in the adipose tissue. The mRNA expression level of the amino acid transceptors LAT1 and SNAT2 was up-regulated (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1 and 2·5:1. In conclusion, maintaining the dietary n-6:n-3 PUFA ratios of 1:1–5:1 would facilitate the absorption and utilisation of fatty acids and free amino acids, and result in improved muscle and adipose composition.
Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source
Lipid metabolism, inflammation, oxidative stress and endothelial function play important roles in the pathogenesis of cardiovascular disease (CVD), which may be affected by an imbalance in the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio. This study aimed to investigate the effects of the n-6/n-3 PUFA ratio on these cardiovascular risk factors in rats fed a high-fat diet using plant oils as the main n-3 PUFA source. The 1:1 and 5:1 ratio groups had significantly decreased serum levels of total cholesterol, low-density lipoprotein cholesterol, and proinflammatory cytokines compared with the 20:1 group (p < 0.05). Additionally, the 20:1 group had significantly increased serum levels of E-Selectin, von Willebrand factor (vWF), and numerous markers of oxidative stress compared with the other groups (p < 0.05). The 1:1 group had a significantly decreased lipid peroxide level compared with the other groups (p < 0.05). Serum levels of malondialdehyde, reactive oxygen species and vWF tended to increase with n-6/n-3 PUFA ratios increasing from 5:1 to 20:1. We demonstrated that low n-6/n-3 PUFA ratio (1:1 and 5:1) had a beneficial effect on cardiovascular risk factors by enhancing favorable lipid profiles, having anti-inflammatory and anti-oxidative stress effects, and improving endothelial function. A high n-6/n-3 PUFA ratio (20:1) had adverse effects. Our results indicated that low n-6/n-3 PUFA ratios exerted beneficial cardiovascular effects, suggesting that plant oils could be used as a source of n-3 fatty acids to prevent CVD. They also suggested that we should be aware of possible adverse effects from excessive n-3 PUFA.
Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases
Background: Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. Methods: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene–diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. Conclusions: The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance in older adults: National Health and nutrition examination Survey (NHANES) 2011–2014
Background Current evidence on the association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance is inconsistent. Therefore, the aim is to explore the association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance in the U.S. noninstitutionalized population of older adults. Methods We used data from the National Health and Nutrition Examination Survey (NHANES) 2011–2014. Intakes of ω-3 and ω-6 fatty acids were obtained through two 24-h dietary recalls and were adjusted by energy. Cognitive performance was evaluated by the Consortium to Establish a Registry for Alzheimer’s disease (CERAD) Word Learning sub-test, Animal Fluency test and Digit Symbol Substitution Test (DSST). For each cognitive test, people who scored lower than the lowest quartile in each age group were defined as having low cognitive performance. Binary logistic regression and restricted cubic spline models were applied to evaluate the association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance. Results A total of 2496 participants aged 60 years or older were included. In the full-adjusted model, the odds ratios (ORs) with 95% confidence interval (CI) of CERAD test score, Animal Fluency test score and DSST test score were 0.58 (0.38–0.88), 0.68 (0.47–0.99) and 0.59 (0.37–0.92) for the highest versus lowest tertile of dietary ω-3 fatty acids intake, respectively; the ORs with 95% CI of CERAD test score, Animal Fluency test score and DSST test score were 0.48 (0.31–0.75), 0.60 (0.40–0.92) and 0.50 (0.34–0.75) for the highest versus lowest tertile of dietary ω-6 fatty acids intake, respectively. The association between ω-6: ω-3 ratio and cognitive performance was not statistically significant in three tests. In dose-response relationship analysis, L-shaped associations were apparent for ω-3 and ω-6 fatty acids intake with CERAD test score, Animal Fluency test score and DSST test score. Conclusions Dietary ω-3 and ω-6 fatty acids intake might be inversely associated with low cognitive performance.
n-6 Fatty acids and cardiovascular health: a review of the evidence for dietary intake recommendations
n-6 PUFA are well known for their critical role in many physiological functions and seem to reduce risks of CHD. However, some argue that excessive consumption of n-6 PUFA may lead to adverse effects on health and therefore recommend reducing dietary n-6 PUFA intake or fixing an upper limit. In this context, the present work aimed to review evidence on the link between n-6 PUFA and risks of CVD. Epidemiological studies show that n-6 PUFA dietary intake significantly lowers blood LDL-cholesterol levels. In addition, n-6 PUFA intake does not increase several CVD risk factors such as blood pressure, inflammatory markers, haemostatic parameters and obesity. Data from prospective cohort and interventional studies converge towards a specific protective role of dietary n-6 PUFA intake, in particular linoleic acid, against CVD. n-6 PUFA benefits are even increased when SFA intake is also reduced. In regards to studies examined in this narrative review, recommendation for n-6 PUFA intake above 5 %, and ideally about 10 %, of total energy appears justified.
n-6 Fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials
Randomised controlled trials (RCT) of mixed n-6 and n-3 PUFA diets, and meta-analyses of their CHD outcomes, have been considered decisive evidence in specifically advising consumption of ‘at least 5–10 % of energy as n-6 PUFA’. Here we (1) performed an extensive literature search and extracted detailed dietary and outcome data enabling a critical examination of all RCT that increased PUFA and reported relevant CHD outcomes; (2) determined if dietary interventions increased n-6 PUFA with specificity, or increased both n-3 and n-6 PUFA (i.e. mixed n-3/n-6 PUFA diets); (3) compared mixed n-3/n-6 PUFA to n-6 specific PUFA diets on relevant CHD outcomes in meta-analyses; (4) evaluated the potential confounding role of trans-fatty acids (TFA). n-3 PUFA intakes were increased substantially in four of eight datasets, and the n-6 PUFA linoleic acid was raised with specificity in four datasets. n-3 and n-6 PUFA replaced a combination of TFA and SFA in all eight datasets. For non-fatal myocardial infarction (MI)+CHD death, the pooled risk reduction for mixed n-3/n-6 PUFA diets was 22 % (risk ratio (RR) 0·78; 95 % CI 0·65, 0·93) compared to an increased risk of 13 % for n-6 specific PUFA diets (RR 1·13; 95 % CI 0·84, 1·53). Risk of non-fatal MI+CHD death was significantly higher in n-6 specific PUFA diets compared to mixed n-3/n-6 PUFA diets (P = 0·02). RCT that substituted n-6 PUFA for TFA and SFA without simultaneously increasing n-3 PUFA produced an increase in risk of death that approached statistical significance (RR 1·16; 95 % CI 0·95, 1·42). Advice to specifically increase n-6 PUFA intake, based on mixed n-3/n-6 RCT data, is unlikely to provide the intended benefits, and may actually increase the risks of CHD and death.
The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials
Background A cornerstone of conventional dietary advice is the recommendation to replace saturated fatty acids (SFA) with mostly n-6 polyunsaturated fatty acids (PUFA) to reduce the risk of coronary heart disease (CHD). Many clinical trials aimed to test this advice and have had their results pooled in several meta-analyses. However, earlier meta-analyses did not sufficiently account for major confounding variables that were present in some of those trials. Therefore, the aim of the study was to account for the major confounding variables in the diet heart trials, and emphasise the results from those trials that most accurately test the effect of replacing SFA with mostly n-6 PUFA. Design Clinical trials were identified from earlier meta-analyses. Relevant trials were categorised as ‘adequately controlled’ or ‘inadequately controlled’ depending on whether there were substantial dietary or non-dietary differences between the experimental and control groups that were not related to SFA or mostly n-6 PUFA intake, then were subject to different subgroup analyses. Results When pooling results from only the adequately controlled trials there was no effect for major CHD events (RR = 1.06, CI = 0.86–1.31), total CHD events (RR = 1.02, CI = 0.84–1.23), CHD mortality (RR = 1.13, CI = 0.91–1.40) and total mortality (RR = 1.07, CI = 0.90–1.26). Whereas, the pooled results from all trials, including the inadequately controlled trials, suggested that replacing SFA with mostly n-6 PUFA would significantly reduce the risk of total CHD events (RR = 0.80, CI = 0.65–0.98, P  = 0.03), but not major CHD events (RR = 0.87, CI = 0.70–1.07), CHD mortality (RR = 0.90, CI = 0.70–1.17) and total mortality (RR = 1.00, CI = 0.90–1.10). Conclusion Available evidence from adequately controlled randomised controlled trials suggest replacing SFA with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality. The suggestion of benefits reported in earlier meta-analyses is due to the inclusion of inadequately controlled trials. These findings have implications for current dietary recommendations.