Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,297
result(s) for
"optogenetics"
Sort by:
Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics
2019
Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.
Journal Article
Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics
2018
Noninvasive deep brain stimulation is an important goal in neuroscience and neuroengineering. Optogenetics normally requires the use of a blue laser inserted into the brain. Chen et al. used specialized nanoparticles that can upconvert near-infrared light from outside the brain into the local emission of blue light (see the Perspective by Feliu et al. ). They injected these nanoparticles into the ventral tegmental area of the mouse brain and activated channelrhodopsin expressed in dopaminergic neurons with near-infrared light generated outside the skull at a distance of several millimeters. This technique allowed distant near-infrared light to evoke fast increases in dopamine release. The method was also used successfully to evoke fear memories in the dentate gyrus during fear conditioning. Science , this issue p. 679 ; see also p. 633 Optogenetic experiments can be performed inside the mouse brain by using near-infrared light applied outside the skull. Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Journal Article
Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources
2018
Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Journal Article
Recent Progress of Development of Optogenetic Implantable Neural Probes
2017
As a cell type-specific neuromodulation method, optogenetic technique holds remarkable potential for the realisation of advanced neuroprostheses. By genetically expressing light-sensitive proteins such as channelrhodopsin-2 (ChR2) in cell membranes, targeted neurons could be controlled by light. This new neuromodulation technique could then be applied into extensive brain networks and be utilised to provide effective therapies for neurological disorders. However, the development of novel optogenetic implants is still a key challenge in the field. The major requirements include small device dimensions, suitable spatial resolution, high safety, and strong controllability. In this paper, I present a concise review of the significant progress that has been made towards achieving a miniaturised, multifunctional, intelligent optogenetic implant. I identify the key limitations of current technologies and discuss the possible opportunities for future development.
Journal Article
Crystal structure of the natural anion-conducting channelrhodopsin GtACR1
2018
The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae
Guillardia theta
, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of
G. theta
ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.
The crystal structure of anion channelrhodopsin-1 (ACR1) from the algae
Guillardia theta
provides insights into the basis of anion conductance.
Journal Article
Integration of optogenetics with complementary methodologies in systems neuroscience
by
Kim, Christina K.
,
Deisseroth, Karl
,
Adhikari, Avishek
in
631/378/1697/2603
,
631/443/376
,
9/10
2017
Key Points
Modern optogenetics enables temporally precise, acute or chronic, excitatory or inhibitory modulation of neuronal activity with cell type and anatomical specificity that can be tuned to timing and magnitude of naturally occurring patterns within the same experimental subject.
Diverse opsin variants exhibit unique spectral and kinetic features that are specifically suited for distinct experimental requirements.
Optogenetics can be used in combination with electrophysiological or optical recordings, providing powerful approaches to simultaneously monitor and perturb neural function.
Activity-dependent labelling of opsins can be used to reactivate neural ensembles that encode particular behaviours or experiences.
New anatomical techniques (such as viral-tracing methods and hydrogel-embedding methods for optical access) enable molecular and anatomical profiling of the same cells that were active
in vivo
, providing integrative understanding of neural circuitry.
Optogenetics is widely used to study the consequences of neuronal activity with high spatiotemporal precision. In this Review, Kim
et al
. discuss the integration of this approach with other technological and methodological advances to gain insights into neuronal function that were previously inaccessible.
Modern optogenetics can be tuned to evoke activity that corresponds to naturally occurring local or global activity in timing, magnitude or individual-cell patterning. This outcome has been facilitated not only by the development of core features of optogenetics over the past 10 years (microbial-opsin variants, opsin-targeting strategies and light-targeting devices) but also by the recent integration of optogenetics with complementary technologies, spanning electrophysiology, activity imaging and anatomical methods for structural and molecular analysis. This integrated approach now supports optogenetic identification of the native, necessary and sufficient causal underpinnings of physiology and behaviour on acute or chronic timescales and across cellular, circuit-level or brain-wide spatial scales.
Journal Article
Optogenetics: 10 years of microbial opsins in neuroscience
2015
Over the past decade, modern optogenetics has emerged from the convergence of developments in microbial opsin engineering, genetic methods for targeting, and optical strategies for light delivery. In this Historical Commentary, Karl Deisseroth reflects on the optogenetic landscape, from the important steps but slow progress in the beginning to the acceleration in discovery seen in recent years.
Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005–2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
Journal Article
Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation
by
Lee, Sunghoon
,
Suzuki, Toshiki
,
Koizumi, Mari
in
Animals
,
Applied Biological Sciences
,
Biocompatibility
2020
Organic electronic devices implemented on flexible thin films are attracting increased attention for biomedical applications because they possess extraordinary conformity to curved surfaces. A neuronal device equipped with an organic light-emitting diode (OLED), used in combination with animals that are genetically engineered to include a light-gated ion channel, would enable cell type-specific stimulation to neurons as well as conformal contact to brain tissue and peripheral soft tissue. This potential application of the OLEDs requires strong luminescence, well over the neuronal excitation threshold in addition to flexibility. Compatibility with neuroimaging techniques such as MRI provides a method to investigate the evoked activities in the whole brain. Here, we developed an ultrathin, flexible, MRI-compatible OLED device and demonstrated the activation of channelrhodopsin-2–expressing neurons in animals. Optical stimulation from the OLED attached to nerve fibers induced contractions in the innervated muscles. Mechanical damage to the tissues was significantly reduced because of the flexibility. Owing to the MRI compatibility, neuronal activities induced by direct optical stimulation of the brain were visualized using MRI. The OLED provides an optical interface for modulating the activity of soft neuronal tissues.
Journal Article
Optogenetic control of intracellular signaling pathways
2015
•We explain mechanisms of light-induced conformational change of photoactivatable proteins.•We describe strategies and studies of using photoactivatable proteins to control intracellular signaling pathways.•We highlight the advantages of using light to control intracellular signaling pathways with superior spatial and temporal resolution.•We discuss precautions to be used in designing experimental schemes of optogenetic control of cell signaling.
Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways and discuss future prospects for the field, including integration of new genetic approaches into optogenetics.
Journal Article
Optogenetic skeletal muscle-powered adaptive biological machines
by
Raman, Ritu
,
Uzel, Sebastien G. M.
,
Sengupta, Parijat
in
Adaptation
,
Animals
,
Applied Biological Sciences
2016
Complex biological systems sense, process, and respond to their surroundings in real time. The ability of such systems to adapt their behavioral response to suit a range of dynamic environmental signals motivates the use of biological materials for other engineering applications. As a step toward forward engineering biological machines (bio-bots) capable of nonnatural functional behaviors, we created a modular light-controlled skeletal muscle-powered bioactuator that can generate up to 300 μN (0.56 kPa) of active tension force in response to a noninvasive optical stimulus. When coupled to a 3D printed flexible bio-bot skeleton, these actuators drive directional locomotion (310 μm/s or 1.3 body lengths/min) and 2D rotational steering (2°/s) in a precisely targeted and controllable manner. The muscle actuators dynamically adapt to their surroundings by adjusting performance in response to “exercise” training stimuli. This demonstration sets the stage for developing multicellular bio-integrated machines and systems for a range of applications.
Journal Article