Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "pegRNA"
Sort by:
Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize
Prime editing is a novel and universal CRISPR/Cas-derived precision genome-editing technology that has been recently developed. However, low efficiency of prime editing has been shown in transgenic rice lines. We hypothesize that enhancing pegRNA expression could improve prime-editing efficiency. In this report, we describe two strategies for enhancing pegRNA expression. We construct a prime editing vector harboring two pegRNA variants for W542L and S621I double mutations in ZmALS1 and ZmALS2 . Compared with previous reports in rice, we achieve much higher prime-editing efficiency in maize. Our results are inspiring and provide a direction for the optimization of plant prime editors.
Precise genome engineering in Drosophila using prime editing
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked. Furthermore, by restricting editing to germ cells, we demonstrate efficient germline transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.
Easy-Prime: a machine learning–based prime editor design tool
Prime editing is a revolutionary genome-editing technology that can make a wide range of precise edits in DNA. However, designing highly efficient prime editors (PEs) remains challenging. We develop Easy-Prime, a machine learning–based program trained with multiple published data sources. Easy-Prime captures both known and novel features, such as RNA folding structure, and optimizes feature combinations to improve editing efficiency. We provide optimized PE design for installation of 89.5% of 152,351 GWAS variants. Easy-Prime is available both as a command line tool and an interactive PE design server at: http://easy-prime.cc/ .
Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity
Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.
Twin prime editor: seamless repair without damage
CRISPR-Cas9 creates remarkable possibilities to modify targeted regions in genomic DNA. However, CRISPR-Cas-mediated DNA double-stranded breaks (DSBs), that tend to generate random insertions or deletions, limit this technology. Recently, Anzalone et al. developed a 'twin prime editing' tool to replace, integrate, or delete large genomic DNA sequences without generating DNA DSBs.
Prime-Editing Methods and pegRNA Design Programs
—It has been 10 years since CRISPR/Cas technology was applied to edit the genomes of various organisms. Its ability to produce a double-strand break in a DNA region specified by the researcher started a revolution in bioengineering. Later, the Base Editing (BE) method was developed. BE is performed via the formation of single-strand breaks by the mutant form of Cas nuclease (nickase), fused with deaminases and other enzymes. It can be used to promote A G and C T transitions, and a C → G transversion. Just over 3 years ago, a new Prime Editing (PE) variant of CRISPR/Cas was invented. Unlike BE, in PE the nickase is fused with reverse transcriptase, capable of building a new DNA chain using the pegRNA template. The pegRNA consists of an elongated guide RNA with an extra sequence at the 3'-end. Prime editing makes it possible to insert the desired mutations into this extra sequence and to carry out any substitutions and indels of bases without the use of special donor DNA. To date, a number of PE variants have been proposed; they are briefly considered in this review with an emphasis on prime editing of plant genomes. Some attention is also paid to pegRNA design programs, as well as evaluation of the efficiency of the editing. Such a variety of PE techniques is due to the opportunities of high-precision introduction of desired changes with a rather low frequency of off-target mutations in the genomes of various organisms. The relatively low efficiency of prime editing inspires researchers to offer new approaches. There is hope that further development of the technology will improve PE enough to take its rightful place among the genome targeting methods that are suitable for any organisms, and will have a positive impact on the agricultural sector, industrial biotechnologies, and medicine.
Prime Editing: An Emerging Tool in Cancer Treatment
Prime Editing is a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based genome editing technique having promising potential in terms of reducing off target activity. It introduces fragments of DNA sequences into the target site using a guide RNA (gRNA) molecule, composed of both the sequence that is to be inserted into the target site along with an inactive Cas9 nickase and a reverse transcriptase. Prime Editing can cause insertions, deletions, and various point mutations for reverting the phenetic characteristics of a disease specially tested in human adult stem cells and cancer cell lines. The main aim of our review is to explore how Prime Editing and its various forms are being utilized as an emerging tool to cure deleterious diseases like cancer, also as a delivery strategy of the tool into cells. There are almost five generations of Prime Editors (PE) with increasing levels of efficiency from one level to another that have huge clinical potential in correcting mutations; however, the necessity for a pegRNA design is extremely significant. But besides having such advantages, the limitations of this technology particularly include generation of double nicks while optimizing the efficiency of PE3. So, it is important to consider all such consequences and customize PE as per requirements.
piggyPrime: High-Efficacy Prime Editing in Human Cells Using piggyBac-Based DNA Transposition
Prime editing is a novel genome editing technology that allows a wide range of tailored genomic alterations. Prime editing does not involve homologous recombination, but suffers from low efficacy. Here, we demonstrate piggyPrime, a transfected single-vector system based on piggyBac DNA transposition for genomic integration of all prime editing components in human cells allowing easy and effective transgenesis with prime editing efficacies up to 100% in cell lines.
Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo . In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.