Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
284 result(s) for "pluvials"
Sort by:
A High-Resolution DEM-Based Method for Tracking Urban Pluvial–Fluvial Floods
Flood models based on high-resolution digital elevation models (DEMs) are important for identifying urban land inundation during extreme rainfall events. Urban pluvial and fluvial floods are influenced by distinct processes that are interconnected; thus, they can transform into one another. Conventional flood models struggle to delineate inundation caused by drainage system overflow (urban pluvial flood) and that caused by rivers (urban fluvial flood). In this study, we proposed a novel method for identifying urban pluvial–fluvial floods using a high-resolution DEM. We developed a DEM-based surface pluvial and fluvial inundation tracking model (DEM-SPFITM) that incorporated flood development and mutual transformation processes. When combined with a surface flood control model (SFCM), this approach enabled tracking of the flow paths and exchanged water volume associated with both flood types. The case study results indicate that the proposed method effectively captures the interplay between pluvial and fluvial flooding, enabling the separate identification of flood extent, depth, and velocity under extreme rainfall conditions for both pluvial and fluvial flooding. Compared to the conventional approach, which independently simulates pluvial and fluvial flooding using the SFCM and subsequently overlays the results to estimate pluvial–fluvial flooding inundation, the proposed method demonstrates superior accuracy and computational efficiency. Simulations of three extreme rainstorms indicated that pluvial flooding primarily contributed to extensive land inundation, characterised by shallower depths and lower velocities, with a limited influence of flood depth on velocity. Meanwhile, fluvial flooding further exacerbated land inundation, leading to significant pluvial–fluvial coexistence. In areas adjacent to these flood zones, fluvial flooding predominated, resulting in greater inundation depths and a more pronounced effect of flood depth on velocity. As rainfall intensity and total rainfall increased, the area of fluvial inundation diminished significantly, whereas pluvial–fluvial coexistence intensified and was distributed in zones with relatively large inundation depths and higher flow velocities. This research presented a novel method for distinguishing between urban pluvial–fluvial floods, providing valuable insights for integrated urban flood management and joint flood risk zoning.
Pluvials, droughts, the Mongol Empire, and modern Mongolia
Although many studies have associated the demise of complex societies with deteriorating climate, few have investigated the connection between an ameliorating environment, surplus resources, energy, and the rise of empires. The 13th-century Mongol Empire was the largest contiguous land empire in world history. Although drought has been proposed as one factor that spurred these conquests, no high-resolution moisture data are available during the rapid development of the Mongol Empire. Here we present a 1,112-y tree-ring reconstruction of warm-season water balance derived from Siberian pine (Pinus sibirica) trees in central Mongolia. Our reconstruction accounts for 56% of the variability in the regional water balance and is significantly correlated with steppe productivity across central Mongolia. In combination with a gridded temperature reconstruction, our results indicate that the regional climate during the conquests of Chinggis Khan's (Genghis Khan's) 13th-century Mongol Empire was warm and persistently wet. This period, characterized by 15 consecutive years of above-average moisture in central Mongolia and coinciding with the rise of Chinggis Khan, is unprecedented over the last 1,112 y. We propose that these climate conditions promoted high grassland productivity and favored the formation of Mongol political and military power. Tree-ring and meteorological data also suggest that the early 21st-century drought in central Mongolia was the hottest drought in the last 1,112 y, consistent with projections of warming over Inner Asia. Future warming may overwhelm increases in precipitation leading to similar heat droughts, with potentially severe consequences for modern Mongolia.
Compound Extremes of Droughts and Pluvials: A Review and Exploration of Spatio-Temporal Characteristics and Associated Risks in the Canadian Prairies
The Canadian Prairies are associated with high natural hydroclimatic variability including the frequent periodic occurrence of droughts and pluvials. These extremes carry various risks including significant damage to the economy, environment and society. The well-documented level of damage necessitates further risk assessment and planned reductions to vulnerability, particularly in light of a warming climate. A logical starting point involves awareness and information about the changing characteristics of such climate extremes. We focus on the compound occurrence of droughts and pluvials as the risks from this type of event are magnified compared to the hydroclimatic extremes in isolation. Compound droughts and pluvials (CDP) are drought and pluvial events that occur in close succession in time or in close proximity in area. Also, research on CDP is limited even for the worldwide literature. Therefore, the purposes of this paper are to synthesize recent literature concerning the risks of CDP, and to provide examples of past occurrences, with a focus on the Canadian Prairies. Since literature from the Prairies is limited, global work is also reviewed. That literature indicates increasing concern and interest in CDP. Relationships between drought and pluvials are also characterized using the SPEI Global Monitor for the Prairies, emphasizing the recent past. Research mostly considers drought and pluvials as separate events in the Prairies, but is integrated here to characterize the relationships of these extremes. The spatiotemporal patterns showed that several of the extreme to record pluvials were found to be closely associated with extreme droughts in the Prairies. The intensities of the extremes and their dry to wet boundaries were described. This is the first research to explore the concept of and to provide examples of CDP for the Prairies and for Canada. Examples of CDP provide insights into the regional hydroclimatic variability. Furthermore, most literature on future projections strongly suggests that this variability is likely to increase, mainly driven by anthropogenic climate change. Therefore, improved methods to characterize and to quantify CDP are required. These findings suggest means of decreasing vulnerability and associated damages. Although the study area is the Canadian Prairies, the work is relevant to other regions that are becoming more vulnerable to increasing risks of and vulnerabilities to such compound extremes.
Real-Time Early Warning System Design for Pluvial Flash Floods—A Review
Pluvial flash floods in urban areas are becoming increasingly frequent due to climate change and human actions, negatively impacting the life, work, production and infrastructure of a population. Pluvial flooding occurs when intense rainfall overflows the limits of urban drainage and water accumulation causes hazardous flash floods. Although flash floods are hard to predict given their rapid formation, Early Warning Systems (EWS) are used to minimize casualties. We performed a systematic review to define the basic structure of an EWS for rain flash floods. The structure of the review is as follows: first, Section 2 describes the most important factors that affect the intensity of pluvial flash floods during rainfall events. Section 3 defines the key elements and actors involved in an effective EWS. Section 4 reviews different EWS architectures for pluvial flash floods implemented worldwide. It was identified that the reviewed projects did not follow guidelines to design early warning systems, neglecting important aspects that must be taken into account in their implementation. Therefore, this manuscript proposes a basic structure for an effective EWS for pluvial flash floods that guarantees the forecasting process and alerts dissemination during rainfall events.
Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic)
The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U–Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.
Centennial‐Scale Intensification of Wet and Dry Extremes in North America
Drought and pluvial extremes are defined as deviations from typical climatology; however, background climatology can shift over time in a non‐stationary climate, impacting interpretations of extremes. This study evaluated trends in meteorological drought and pluvial extremes by merging tree‐ring reconstructions, observations, and climate‐model simulations spanning 850–2100 CE across North America to determine whether modern and projected future precipitation lies outside the range of natural climate variability. Our results found widespread and spatially consistent exacerbation of drought and pluvial extremes, especially summer drought and winter pluvials, with drying in the west and south, wetting trends in the northeast, and intensification of both extremes across the east and north. Our study suggests that climate change has already shifted precipitation climatology beyond pre‐Industrial climatology and is projected to further intensify ongoing shifts. Plain Language Summary Managing water resources has become challenging due to the effect of human‐caused climate change on precipitation. This study examines trends in droughts and pluvials from the distant past (850 CE) to the projected future (2100 CE) to determine whether precipitation extremes in the modern, Industrial era and future are beyond what is typical of natural climate variability in North America. Trends were generated by merging information from tree rings, observations, and climate models using a novel statistical approach. Results indicate the widespread intensification of both drought and pluvials–especially summer drought and winter pluvials during the modern and future periods. Spatially, southern and western regions of North America are becoming drier, while the northeast is getting wetter, and central areas of North America show a wider range between drought and pluvial years. Our study suggests that anthropogenic climate change has already modified drought and pluvial extremes beyond natural, pre‐Industrial conditions and these ongoing trends are projected to intensify through the future. Key Points This study models seasonal drought and pluvial trends, merging reconstructions, observations, and projections from 850 to 2100 CE Results show widespread exacerbation of both extremes with overall drying (wetting) in southern (northeastern) North America Modern drought and pluvial distributions are outside pre‐Industrial (1850) conditions, and exhibiting substantial shifts in some regions
Comprehensive Understanding the Disaster-Causing Mechanism, Governance Dilemma and Targeted Countermeasures of Urban Pluvial Flooding in China
Urban pluvial flooding in China has become one of the major challenges for sustainable development. This paper analyzes the impact of climate change, urbanization, and integrated disaster drivers on urban pluvial flooding hazards, starting from the disaster-causing mechanisms of urban pluvial flooding in China. This paper then analyzes the main features and progress of urban pluvial flooding governance in China. In particular, this paper describes the progress of sponge cities in China. On the basis of the above contents, this paper describes three manifestations of the fragmentation dilemma at the level of governance, namely, fragmentation in value integration due to conflicting management orders and service values, fragmentation in resource and power allocation due to the lack of vertical top-level design and blurred horizontal departmental management boundaries, and fragmentation in policy formulation and implementation due to outdated urban flood control standards and interdepartmental information compartmentalization. In response to the fragmentation dilemma in urban pluvial flooding management in China, this paper introduces the concept of holistic governance and clarifies the path of urban waterlogging management, i.e., forming a collaborative and diversified governance subjects, deeply optimizing the organizational structure of urban waterlogging management, creating a mature information-based governance platform, and improving the legal and rule of law construction model. This paper is informative for understanding the governance of urban pluvial flooding in China from a government-led management level.
Growing Pluvial Flood Hazard and Exposure From Heatwave‐Preconditioned Rainfall Extremes in Chennai Metropolitan Area, India
Sequential compound hazards—heatwaves followed by extreme rainfall—can cause greater impacts than their isolated occurrences, yet compounding effects of such hazards on urban flood risk remain unexplored. Using 40‐year (1982–2021) hourly rainfall observations in the Chennai Metropolitan Area, we show that the frequency of heatwave‐preconditioned rainfall extremes has increased from an average of 1.2 events/year in 1982–1991 to 3.2 events/year in 2012–2021. The tail of the probability distribution of heatwave‐preconditioned rainfall intensity decays slower than uncompounded events. Using a state‐of‐the‐art hydrodynamic model and joint exceedance probability of accumulated event rainfall and peak rainfall intensity, we find that the spatial extent of high‐hazard zones (1.4–3.5 m inundation depth) is up to ∼6 times larger compared to uncompounded events, while building and population exposure increase by 7 and 11 times, respectively. Flood risk reduction and climate adaptation should consider more frequent heatwave‐preconditioned rainfall extremes and their higher flood impacts.
Growing Threats From Swings Between Hot and Wet Extremes in a Warmer World
The abrupt alternation between hot and wet extremes can lead to more severe societal impacts than isolated extremes. However, despite an understanding of hot and wet extremes separately, their temporally compounding characteristics are not well examined yet. Our study presents a comprehensive assessment of successive heat‐pluvial and pluvial‐heat events globally. We find that these successive extremes within a week occur every 6–7 years on average within warm seasons during 1956–2015, about 15% more often than would be expected by chance, and that they have a significant increase in frequency of about 22% per decade due to warming. We further investigate the role of vapor pressure deficit (VPD) and find that heat‐pluvial (pluvial‐heat) events are linked to negative (positive) VPD anomalies. Our results are statistically significant based on moving‐blocks bootstrap resampling and field significance tests, highlighting these methods' importance in robustly identifying compound events under autocorrelation and multiple‐testing conditions. Plain Language Summary In recent years, the world has experienced various clustered weather and climate extremes, which are highly disruptive to humans and society. However, current knowledge on the risk of successive occurrence of hot (humid heat, including the effects of both temperature and humidity) and wet (pluvial flooding, usually caused by extreme rainfall) extremes remains unclear. In this study, we present a comprehensive assessment of the two types of interacting hot and wet extremes: humid heat extremes followed by pluvial flooding (heat‐pluvial) and extreme pluvials followed by humid heat (pluvial‐heat). We find that these events have increased significantly in most regions of the world for the last three decades, which can be associated with the warming effect. Importantly, we identify that the vapor pressure deficit plays an important but varying role in the abrupt alternation between heat and pluvial events. We emphasize the importance of using reliable statistical tests to ensure the validity of the results for complex compound events. Our analysis highlights the need for policymakers and stakeholders to develop adaptation strategies to cope with overlapping vulnerabilities due to compound hot and wet extremes, especially in areas prone to both such as West Australia, South America and Sub‐Saharan Africa. Key Points Temporally compounding heat and pluvial events occur about 15% more often than would be expected by chance Increases in hot‐wet compound events have largely been linked to warming Vapor‐pressure‐deficit anomalies are a signature of heat‐pluvial versus pluvial‐heat sequences, a conclusion drawn from field significance tests
A spatial framework to explore needs and opportunities for interoperable urban flood management
Managing current and future urban flood risks must consider the connection (i.e. interoperability) between existing (and new) infrastructure systems to manage stormwater (pluvial flooding). Yet, due to a lack of systematic approaches to identify interoperable flood management interventions, opportunities are missed to combine investments of existing infrastructure (e.g. drainage, roads, land use and buildings) with blue-green infrastructure (e.g. sustainable urban drainage systems, green roofs, green spaces). In this study, a spatial analysis framework is presented combining hydrodynamic modelling with spatial information on infrastructure systems to provide strategic direction for systems-level urban flood management (UFM). The framework is built upon three categories of data: (i) flood hazard areas (i.e. characterize the spatial flood problem); (ii) flood source areas (i.e. areas contributing the most to surface flooding); (iii) the interoperable potential of different systems (i.e. which infrastructure systems can contribute to water management functions). Applied to the urban catchment of Newcastle-Upon-Tyne (UK), the study illustrates the novelty of combining spatial data sources in a systematic way, and highlights the spatial (dis)connectivity in terms of flood source areas (where most of the flood management intervention is required) and the benefit areas (where most of the reduction in flooding occurs). The framework provides a strategic tool for managing stormwater pathways from an interoperable perspective that can help city-scale infrastructure development that considers UFM across multiple systems. This article is part of the theme issue ‘Urban flood resilience’.