Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
50,675 result(s) for "pores"
Sort by:
HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor
HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.
The molecular architecture of the plant nuclear pore complex
The nucleus contains the cell's genetic material, which directs cellular activity via gene regulation. The physical barrier of the nuclear envelope needs to be permeable to a variety of macromolecules and signals. The most prominent gateways for the transport of macromolecules are the nuclear pore complexes (NPCs). The NPC is the largest multiprotein complex in the cell, and is composed of multiple copies of ∼30 different proteins called nucleoporins. Although much progress has been made in dissecting the NPC structure in vertebrates and yeast, the molecular architecture and physiological function of nucleoporins in plants remain poorly understood. In this review, we summarize the current knowledge regarding the plant NPC proteome and address structural and functional aspects of plant nucleoporins, which support the fundamental cellular machinery.
The HIV capsid mimics karyopherin engagement of FG-nucleoporins
HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus 1 , 2 . Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore 3 . This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine–glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport 4 . By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope. Dissection of the nuclear pore complex provides a model in which the HIV capsid enters the nucleus through karyopherin mimicry, a mechanism likely to be conserved across other viruses.
Impact of distinct FG nucleoporin repeats on Nup98 self-association
Nucleoporins rich in phenylalanine/glycine (FG) residues form the permeability barrier within the nuclear pore complex and are implicated in several pathological cellular processes, including oncogenic fusion condensates. The self-association of FG-repeat proteins and interactions between FG-repeats play a critical role in these activities by forming hydrogel-like structures. Here we show that mutation of specific FG repeats of Nup98 can strongly decrease the protein’s self-association capabilities. We further present a cryo-electron microscopy structure of a Nup98 peptide fibril with higher stability per residue compared with previous Nup98 fibril structures. The high-resolution structure reveals zipper-like hydrophobic patches which contain a GLFG motif and are less compatible for binding to nuclear transport receptors. The identified distinct molecular properties of different regions of the nucleoporin may contribute to spatial variations in the self-association of FG-repeats, potentially influencing transport processes through the nuclear pore. Here, the authors demonstrate that mutations in the FG repeats of Nup98 significantly reduce its self-association capabilities and present a cryoEM structure exhibiting higher stability per residue then previously observed, suggesting spatial variations in self-association.
In situ structural analysis of the human nuclear pore complex
The most comprehensive architectural model to date of the nuclear pore complex reveals previously unknown local interactions, and a role for nucleoporin 358 in Y-complex oligomerization. A detailed model of the human nuclear pore complex The transport of materials between the nucleus and cytoplasm in eukaryotic cells is controlled by the nuclear pore complex. Martin Beck and colleagues have used cryo-electron tomography, mass spectrometry and other analyses to generate the most comprehensive architectural model of the human nuclear pore complex to date. The model reveals previously unknown local interactions, and a role for the transport channel nucleoporin 358 (Nup358) in mediating oligomerization of the Y-complex within the nuclear pore complex. Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter 1 . The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ . Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block—although compositionally identical—engage in different local sets of interactions and conformations.
Nuclear export of pre-60S particles through the nuclear pore complex
The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm 1 – 3 . The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors 4 , 5 . Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC. We report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of the yeast nuclear pore complex, suggesting a translocation model for the export of pre-60S particles through the complex.
Docking a flexible basket onto the core of the nuclear pore complex
The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity. Stankunas and Köhler define how the nucleoplasmic portion of the nuclear pore complex (NPC), the basket, docks onto the NPC core by integrating AlphaFold-based interaction screens, electron microscopy, and membrane-templated reconstitutions.
Architecture of the symmetric core of the nuclear pore
Nuclear pore complexes (NPCs) consist of around 1000 protein subunits, are embedded in the membrane that surrounds the nucleus, and regulate transport between the nucleus and the cytoplasm. Although the overall shape of NPCs is known, the details of this macromolecular complex have been obscure. Now, Lin et al. have reconstituted the pore components, determined the interactions between them, and fitted them into a tomographic reconstruction. Kosinski et al. have provided an architectural map of the inner ring of the pore. Science , this issue pp. 10.1126/science.aaf1015 and 363 Reconstitution, spectroscopy, and crystallography allow the construction of a model of the human nuclear pore. The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC’s structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.
The molecular architecture of the nuclear pore complex
Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC’s 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of ‘columns’. These findings provide clues to the evolutionary origins of the NPC. Gatekeeper for the Nucleus The nuclear pore complex plays a crucial role in the cell, as gatekeeper for traffic between the cytoplasm and the interior of the nucleus. It is a large supramolecular complex made up of multiple copies of about 30 different proteins — 456 protein molecules in all. Cell biologists would love to know how each of the pore molecules are placed, but so far this has eluded conventional structural studies. Now, a new proteomics-based technique has provided a detailed view of the architecture of the yeast nuclear pore complex. Half of the complex is made of a core scaffold forming a network coating the surface of the nuclear envelope membrane within which the complex is embedded. The selective transport barrier is formed by the many proteins lining the inner face of the scaffold. Despite its size, there are only a few structural modules in the complex; this underlying simplicity provides possible pointers to an evolutionary origin from a 'primordial' nuclear pore complex. In the cover graphic, the 100-nm diameter pores are shown in the silver-grey nuclear envelope.