Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
333 result(s) for "secondary metabolite biosynthetic gene clusters"
Sort by:
Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria
Abstract Bacterial secondary metabolites (SM) are rich sources of drug leads, and in particular, numerous metabolites have been isolated from actinomycetes. It was revealed by recent genome sequence projects that actinomycetes harbor much more secondary metabolite-biosynthetic gene clusters (SM-BGCs) than previously expected. Nevertheless, large parts of SM-BGCs in actinomycetes are dormant and cryptic under the standard culture conditions. Therefore, a widely applicable methodology for cryptic SM-BGC activation is required to obtain novel SM. Recently, it was discovered that co-culturing with mycolic-acid-containing bacteria (MACB) widely activated cryptic SM-BGCs in actinomycetes. This “combined-culture” methodology (co-culture methodology using MACB as the partner of actinomycetes) is easily applicable for a broad range of actinomycetes, and indeed, 33 novel SM have been successfully obtained from 12 actinomycetes so far. In this review, the development, application, and mechanistic analysis of the combined-culture method were summarized.
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
The take-all disease is one of the most important maladies in cereals and grasses, being caused by the fungus Gaeumannomyces tritici. Secondary metabolites are known to perform critical functions during the infection process of various phytopathogens. However, the current understanding of the biosynthesis of secondary metabolites in G. tritici is limited. Similarly, comprehensive analyses of the expression, conservation, and evolution of these biosynthesis-related genes are crucial for enhancing our knowledge of the molecular mechanisms that drive the development of the take-all disease. Here we have performed a deep survey and description of secondary metabolite biosynthetic gene clusters in G. tritici, analyzed a previously published RNA-seq of a mimicked infection condition, and assessed the conservation among 10 different Magnaporthales order members. Notably, the majority of the 35 putative gene clusters identified were conserved among these species, with GtPKS1, GtPKS3, and GtTERP4 uniquely identified in G. tritici. In the mimicked infection condition, seven gene clusters, including the GtPKS1 cluster, exhibited upregulated expression. Through comparative genomic analysis, GtPKS1 was associated with the production of dichlorodiaporthin, a metabolite with cytotoxic and antifungal activity. In addition, GtPKS10 and GtPKSNRPS3 showed similarities to already characterized biosynthetic pathways involved in the synthesis of ACR-toxin (phytotoxic) and trichosetin (phytotoxic and antibiotic), respectively. These three gene clusters were further scrutinized through phylogenetic inference, which revealed the distribution of orthologous sequences across various plant-associated fungi. Finally, the detailed identification of several genes enrolled in secondary metabolite biosynthesis provides the foundation for future in-depth research, supporting the potential impact of several small molecules on G. tritici lifecycle and host interactions.
Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model
Background The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae , we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae , analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). Results Among 73 BGCs identified in M. anisopliae , 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. Conclusions Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.
Secondary Metabolites of the Rice Blast Fungus Pyricularia oryzae: Biosynthesis and Biological Function
Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.
Corallococcus silvisoli sp. nov., a novel myxobacterium isolated from subtropical forest soil
An orange-pigmented myxobacterium, designated strain c25j21T, was isolated from subtropical forest soil collected from the Chebaling National Nature Reserve in Guangdong Province, China. Phylogenetic analysis based on the 16S rRNA gene and core genes clearly showed that the novel strain was affiliated within the genus Corallococcus and most closely related to Corallococcus aberystwythensis DSM 108846T (99.3% 16S rRNA gene sequence similarity), while C. exercitus DSM 108849T (99.2%) and C. carmarthensis DSM 108842T (99.0%) were the next most closely related type strains. The draft genome sequence of strain c25j21T was 9.23 Mb in length with a G + C content of 70.7 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain c25j21T and its closely related type strains were 88.1–89.1 and 34.1–36.3%, respectively. The major fatty acids contained iso-C15:0, iso-C17:0, iso-C17:1ω5c and iso-C17:0 2-OH. The predominant respiratory quinone was menaquinone 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis, strain c25j21T represents a novel species of the genus Corallococcus, for which the name Corallococcus silvisoli sp. nov. is proposed. The type strain is c25j21T (= GDMCC 1.1387T = KCTC 62437T).
Diversification of Secondary Metabolite Biosynthetic Gene Clusters Coincides with Lineage Divergence in Streptomyces
We have identified Streptomyces sister-taxa which share a recent common ancestor and nearly identical small subunit (SSU) rRNA gene sequences, but inhabit distinct geographic ranges demarcated by latitude and have sufficient genomic divergence to represent distinct species. Here, we explore the evolutionary dynamics of secondary metabolite biosynthetic gene clusters (SMGCs) following lineage divergence of these sister-taxa. These sister-taxa strains contained 310 distinct SMGCs belonging to 22 different gene cluster classes. While there was broad conservation of these 22 gene cluster classes among the genomes analyzed, each individual genome harbored a different number of gene clusters within each class. A total of nine SMGCs were conserved across nearly all strains, but the majority (57%) of SMGCs were strain-specific. We show that while each individual genome has a unique combination of SMGCs, this diversity displays lineage-level modularity. Overall, the northern-derived (NDR) clade had more SMGCs than the southern-derived (SDR) clade (40.7 ± 3.9 and 33.8 ± 3.9, mean and S.D., respectively). This difference in SMGC content corresponded with differences in the number of predicted open reading frames (ORFs) per genome (7775 ± 196 and 7093 ± 205, mean and S.D., respectively) such that the ratio of SMGC:ORF did not differ between sister-taxa genomes. We show that changes in SMGC diversity between the sister-taxa were driven primarily by gene acquisition and deletion events, and these changes were associated with an overall change in genome size which accompanied lineage divergence.
Pezizomycetes Genomes Reveal Diverse P450 Complements Characteristic of Saprotrophic and Ectomycorrhizal Lifestyles
Cytochrome P450 monooxygenases (CYPs/P450s) are heme proteins that play a role in organisms’ primary and secondary metabolism. P450s play an important role in organism adaptation since lifestyle influences P450 composition in their genome. This phenomenon is well-documented in bacteria but less so in fungi. This study observed this phenomenon where diverse P450 complements were identified in saprophytic and ectomycorrhizal Pezizomycetes. Genome-wide data mining, annotation, and phylogenetic analysis of P450s in 19 Pezizomycetes revealed 668 P450s that can be grouped into 153 P450 families and 245 P450 subfamilies. Only four P450 families, namely, CYP51, CYP61, CYP5093, and CYP6001, are conserved across 19 Pezizomycetes, indicating their important role in these species. A total of 5 saprophyte Pezizomycetes have 103 P450 families, whereas 14 ectomycorrhizal Pezizomycetes have 89 P450 families. Only 39 P450 families were common, and 50 and 64 P450 families, respectively, were unique to ectomycorrhizal and saprophytic Pezizomycetes. These findings suggest that the switch from a saprophytic to an ectomycorrhizal lifestyle led to both the development of diverse P450 families as well as the loss of P450s, which led to the lowest P450 family diversity, despite the emergence of novel P450 families in ectomycorrhizal Pezizomycetes.
Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus
Background The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. Results In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA–sgRNA–tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. Conclusions By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.
Analysis of the complete genome sequence of a marine-derived strain Streptomyces sp. S063 CGMCC 14582 reveals its biosynthetic potential to produce novel anti-complement agents and peptides
Genome sequences of marine streptomycetes are valuable for the discovery of useful enzymes and bioactive compounds by genome mining. However, publicly available complete genome sequences of marine streptomycetes are still limited. Here, we present the complete genome sequence of a marine streptomycete Streptomyces sp. S063 CGMCC 14582. Species delineation based on the pairwise digital DNA-DNA hybridization and genome comparison ANI (average nucleotide identity) value showed that Streptomyces sp. S063 CGMCC 14582 possesses a unique genome that is clearly different from all of the other available genomes. Bioactivity tests showed that Streptomyces sp. S063 CGMCC 14582 produces metabolites with anti-complement activities, which are useful for treatment of numerous diseases that arise from inappropriate activation of the human complement system. Analysis of the genome reveals no biosynthetic gene cluster (BGC) which shows even low similarity to that of the known anti-complement agents was detected in the genome, indicating that Streptomyces sp. S063 CGMCC 14582 may produce novel anti-complement agents of microbial origin. Four BGCs which are potentially involved in biosynthesis of non-ribosomal peptides were disrupted, but no decrease of anti-complement activities was observed, suggesting that these four BGCs are not involved in biosynthesis of the anti-complement agents. In addition, LC-MS/MS analysis and subsequent alignment through the Global Natural Products Social Molecular Networking (GNPS) platform led to the detection of novel peptides produced by the strain. Streptomyces sp. S063 CGMCC 14582 grows rapidly and is salt tolerant, which benefits efficient secondary metabolite production via seawater-based fermentation. Our results indicate that Streptomyces sp. S063 has great potential to produce novel bioactive compounds, and also is a good host for heterologous production of useful secondary metabolites for drug discovery.
A comparative genomics study of 23 Aspergillus species from section Flavi
Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.