MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici
Journal Article

Secondary metabolite gene clusters from the phytopathogenic fungus Gaeumannomyces tritici

2024
Request Book From Autostore and Choose the Collection Method
Overview
The take-all disease is one of the most important maladies in cereals and grasses, being caused by the fungus Gaeumannomyces tritici. Secondary metabolites are known to perform critical functions during the infection process of various phytopathogens. However, the current understanding of the biosynthesis of secondary metabolites in G. tritici is limited. Similarly, comprehensive analyses of the expression, conservation, and evolution of these biosynthesis-related genes are crucial for enhancing our knowledge of the molecular mechanisms that drive the development of the take-all disease. Here we have performed a deep survey and description of secondary metabolite biosynthetic gene clusters in G. tritici, analyzed a previously published RNA-seq of a mimicked infection condition, and assessed the conservation among 10 different Magnaporthales order members. Notably, the majority of the 35 putative gene clusters identified were conserved among these species, with GtPKS1, GtPKS3, and GtTERP4 uniquely identified in G. tritici. In the mimicked infection condition, seven gene clusters, including the GtPKS1 cluster, exhibited upregulated expression. Through comparative genomic analysis, GtPKS1 was associated with the production of dichlorodiaporthin, a metabolite with cytotoxic and antifungal activity. In addition, GtPKS10 and GtPKSNRPS3 showed similarities to already characterized biosynthetic pathways involved in the synthesis of ACR-toxin (phytotoxic) and trichosetin (phytotoxic and antibiotic), respectively. These three gene clusters were further scrutinized through phylogenetic inference, which revealed the distribution of orthologous sequences across various plant-associated fungi. Finally, the detailed identification of several genes enrolled in secondary metabolite biosynthesis provides the foundation for future in-depth research, supporting the potential impact of several small molecules on G. tritici lifecycle and host interactions.