Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
433 result(s) for "shuttle effect"
Sort by:
Metallic WO2-Promoted CoWO4/WO2 Heterojunction with Intercalation-Mediated Catalysis for Lithium–Sulfur Batteries
Highlights The CoWO 4 /WO 2 heterojunction was successfully constructed through hydrothermal synthesis of precursors followed by autogenous transformation induced by hydrogen reduction. The synergistic effect of CoWO 4 and WO 2 promotes the catalytic conversion of polysulfides and suppresses the shuttle effect. The CoWO 4 /WO 2 heterojunction demonstrates significantly enhanced catalytic performance, delivering a high capacity of 1262 mAh g −1 at 0.1 C. Lithium–sulfur (Li–S) batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect. However, the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties. In this work, we propose an autogenously transformed CoWO 4 /WO 2 heterojunction catalyst, integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity. CoWO 4 effectively captures polysulfides, while the CoWO 4 /WO 2 interface facilitates their S–S bond activation on heterogenous catalytic sites. Benefiting from its directional intercalation channels, CoWO 4 not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport. Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite. As a result, the CoWO 4 /WO 2 heterostructure demonstrates significantly enhanced catalytic performance, delivering a high capacity of 1262 mAh g −1 at 0.1 C. Furthermore, its rate capability and high sulfur loading performance are markedly improved, surpassing the limitations of its single-component counterparts. This study provides new insights into the catalytic mechanisms governing Li–S chemistry and offers a promising strategy for the rational design of high-performance Li–S battery catalysts.
Catalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect
Lithium–sulfur (Li–S) battery has emerged as one of the most promising next‐generation energy‐storage systems. However, the shuttle effect greatly reduces the battery cycle life and sulfur utilization, which is great deterrent to its practical use. This paper reviews the tremendous efforts that are made to find a remedy for this problem, mostly through physical or chemical confinement of the lithium polysulfides (LiPSs). Intrinsically, this “confinement” has a relatively limited effect on improving the battery performance because in most cases, the LiPSs are “passively” blocked and cannot be reused. Thus, this strategy becomes less effective with a high sulfur loading and ultralong cycling. A more “positive” method that not only traps but also increases the subsequent conversion of LiPSs back to lithium sulfides is urgently needed to fundamentally solve the shuttle effect. Here, recent advances on catalytic effects in increasing the rate of conversion of soluble long‐chain LiPSs to insoluble short‐chain Li2S2/Li2S, and vice versa, are reviewed, and the roles of noble metals, metal oxides, metal sulfides, metal nitrides, and some metal‐free materials in this process are highlighted. Challenges and potential solutions for the design of catalytic cathodes and interlayers in Li–S battery are discussed in detail. Lithium–sulfur (Li–S) battery has emerged as one of the most promising next‐generation energy‐storage systems. The catalytic effect on propelling the conversion of soluble long‐chain lithium polysulfides and insoluble low‐chain Li2S2/Li2S is an important procedure for developing practically useable Li–S battery.
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries
HighlightsThe electrochemical principles/mechanism of Li–S batteries and origin of the shuttle effect have been discussed.The efficient strategies have been summarized to inhibit the shuttle effect.The recent advances of inhibition of shuttle effect in Li–S batteries for all components from anode to cathode.Lithium–sulfur (Li–S) batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost. Nevertheless, the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value. Many methods were proposed for inhibiting the shuttle effect of polysulfide, improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries. Here, we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries. First, the electrochemical principles/mechanism and origin of the shuttle effect are described in detail. Moreover, the efficient strategies, including boosting the sulfur conversion rate of sulfur, confining sulfur or lithium polysulfides (LPS) within cathode host, confining LPS in the shield layer, and preventing LPS from contacting the anode, will be discussed to suppress the shuttle effect. Then, recent advances in inhibition of shuttle effect in cathode, electrolyte, separator, and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries. Finally, we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li.
Li-S Batteries: Challenges, Achievements and Opportunities
To realize a low-carbon economy and sustainable energy supply, the development of energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising next-generation battery devices because of their remarkable theoretical energy density, cost-effectiveness, and environmental benignity. However, the practical application of Li-S batteries is hindered by such challenges as low sulfur utilization (< 80%), fast capacity fade, short service life (< 200 redox cycles), and severe self-discharge. The reasons behind the challenges are: (1) low conductivity of the active materials, (2) large volume changes during redox cycling, (3) serious polysulfide shuttling and, (4) lithium-metal anode contamination/corrosion and dendrite formation. Significant achievements have been made to address these problems in the past decade. In this review, the recent advances in material synthesis and technology development are analysed in terms of the electrochemical performance of different Li-S battery components. The critical analysis was conducted based on the merits and shortcomings of the reported work on the issues facing the individual component. A versatile 3D-printing technique is also examined on its practicability for Li-S battery production. The insights on the rational structural design and reasonable parameters for Li-S batteries are highlighted along with the “five 5s” concept from a practical point of view. The remaining challenges are outlined for researchers to devote more efforts on the understanding and commercialization of the devices in terms of the material preparation, cell manufacturing, and characterization. Graphical Abstract
A review on lithium-sulfur batteries: Challenge, development, and perspective
Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to break through the specific energy limitations of commercial lithium-ion batteries given the high theoretical specific energy, environmental friendliness, and low cost. Over the past decade, tremendous progress have been achieved in improving the electrochemical performance especially the lifespan by various strategies mainly concentrated on the sulfur cathodes. In this review, the fundamental electrochemistry of sulfur cathode and lithium anode is revealed to understand the current dilemmas. And the advances achieved through diverse strategies are comprehensively summarized, which involves lithium polysulfides (LiPSs) limitation, sulfur redox reaction regulation and electrocatalysis in sulfur cathode and artificial solid electrolyte interface (SEI), electrolyte design, and structured anode in lithium anode. Additionally, the differences between laboratory level coin cells and actual pouch cells need to be addressed that only few reports on practical Li-S pouch cell are available due to the unexpected problems on both sulfur cathode and lithium anode which are masked at lithium and electrolyte excess. Lastly, the challenges and perspective toward the practical Li-S batteries are also offered.
Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries
With high energy density and low material cost, lithium-sulfur batteries (LSBs) emerge quite expeditiously as a fascinating energy storage system over the past decade. Broad applications of LSBs ranging from electric vehicles to stationary grid storage seem rather bright in recent literatures. However, there still exist many pressing challenges to be addressed because we do not yet fully understand and control the electrode-electrolyte interface chemistries during battery operation, such as polysulfide shuttling and poor utilization of active sulfur. Single-atom catalysts (SACs) pave new possibilities of tackling the tough issues due to their decent applicability in the atomic-level identification of structure-activity relationships and reaction mechanism, as well as their structural tunability with atomic precision. This review comprehensively summarizes the very recent advances in utilization of highly active SACs for LSBs by stating and discussing the related publications, which involves catalyst synthesis routes, battery performance, catalytic mechanisms, optimization strategies, and promises to achieve long-life, high-energy LSBs. We see that endeavors to employ SACs to modify sulfur cathode have allowed efficient polysulfide conversion and confinement, leading to the minimization of shuttle effect. Parallel efforts are being devoted to extending the scope of SACs to cell separator and lithium metal anode in order to unlock the full potential of LSBs. We also obtain mechanistic insights into battery chemistries and nature of SACs in their strong interactions with polysulfides through advanced in situ characterizations documented. Overall, acceleration in the development of LSBs by introducing SACs is noticeable, and this cutting edge needs more attentions to further promoting the design of better LSBs.
Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review
Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.
Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage
As one of the most promising cathode materials for next-generation batteries, sulfur has been widely used in organic metal-sulfur batteries, especially in Li-S batteries. However, to date, Pb-S chemistry has never been officially reported. In this paper, a reliable aqueous Pb-S battery based on a dual conversion reaction was constructed. To clarify the feasibility, three important thermodynamic parameters of the Pb-S system were analyzed, including the solubility of PbS in aqueous solution, the volume change of the Pb-S battery system, and the potential of the S/PbS cathode redox couple. Here, it is demonstrated that the aqueous Pb-S battery possesses a great advantage in theory, and the inherent insolubility of PbS makes an aqueous Pb-S system without a shuttle effect. Moreover, the conversion-type counter electrode of a Pb-S system with a stable nucleation rate endows it with a dendrite-free nature, which is quite different from the traditional metal-sulfur battery with a stripping/plating–type counter electrode. Benefitting from these remarkable natures, the aqueous Pb-S battery exhibits a high discharge capacity of 1,343.9 mAh g−1 sulfur with a capacity retention of 71.4% after 400 cycles. In addition, the feasibility of this Pb-S system is further demonstrated in a hybrid cell consisting of an S cathode and Zn anode, which affords an energy density of 930.9 Wh kg−1 sulfur.