Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
186 result(s) for "skipjack"
Sort by:
Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs (II): Protective Function on UVB-Irradiated HaCaT Cells through Antioxidant and Anti-Apoptotic Mechanisms
The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.
Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia
Using remote sensing of sea surface temperature (SST), sea surface height anomaly (SSHA) and chlorophyll-a (Chl-a) together with catch data, we investigated the detection and persistence of important pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, Indonesia. We analyzed the data for the period between the northwest and southeast monsoon 2007-2011. A pelagic hotspot index was constructed from a model of multi-spectrum satellite-based oceanographic data in relation to skipjack fishing performance. Results showed that skipjack catch per unit efforts (CPUEs) increased significantly in areas of highest pelagic hotspot indices. The distribution and dynamics of habitat hotspots were detected by the synoptic measurements of SST, SSHA and Chl-a ranging from 29.5° to 31.5°C, from 2.5 to 12.5 cm and from 0.15 to 0.35 mg m-3, respectively. Total area of hotspots consistently peaked in May. Validation of skipjack CPUE predicted by our model against observed data from 2012 was highly significant. The key pelagic habitat corresponded with the Chl-a front, which could be related to the areas of relatively high prey abundance (enhanced feeding opportunity) for skipjack. We found that the area and persistence of the potential skipjack habitat hotspots for the 5 years were clearly identified by the 0.2 mg m-3 Chl-a isopleth, suggesting that the Chl-a front provides a key oceanographic indicator for global understanding on skipjack tuna habitat hotspots in the western tropical Pacific Ocean, especially within Coral Triangle tuna.
Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs: Preparation, Identification, Antioxidant Activity, and Stability against Thermal, pH, and Simulated Gastrointestinal Digestion Treatments
Cardiac arterial bulbs of Skipjack tuna (Katsuwonus pelamis) are rich in elastin, and its hydrolysates are high quality raw materials for daily cosmetics. In order to effectively utilizing Skipjack tuna processing byproducts-cardiac arterial bulbs and to prepare peptides with high antioxidant activity, pepsin was selected from six proteases for hydrolyzing proteins, and the best hydrolysis conditions of pepsin were optimized. Using ultrafiltration and chromatographic methods, eleven antioxidant peptides were purified from protein hydrolysate of tuna cardiac arterial bulbs. Four tripeptides (QGD, PKK, GPQ and GLN) were identified as well as seven pentapeptides (GEQSN, GEEGD, YEGGD, GEGER, GEGQR, GPGLM and GDRGD). Three out of them, namely the tripeptide PKK and the pentapeptides YEGGD and GPGLM exhibited the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and superoxide anion assays. They also showed to protect plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, they exhibited high stability under temperature ranged from 20-100 °C, pH values ranged from 3-11, and they simulated gastrointestinal digestion for 240 min. These results suggest that the prepared eleven antioxidant peptides from cardiac arterial bulbs, especially the three peptides PKK, YEGGD, and GPGLM, could serve as promising candidates in health-promoting products due to their high antioxidant activity and their stability.
Otolith chemical fingerprints of skipjack tuna
The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year (<6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (Li:Ca, Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) and stable isotopic ([delta].sup.13 C, [delta].sup.18 O) signatures were used, from individuals captured in 2018 and 2019. Otolith Sr:Ca, Ba:Ca, Mg:Ca and [delta].sup.18 O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures associated with seasonal changes in oceanographic conditions must be well understood, particularly for species with several reproductive peaks throughout the year. Otolith microchemistry in conjunction with other techniques (e.g., genetics, particle tracking) should be further investigated to resolve skipjack stock structure, which will ultimately contribute to the sustainable management of this stock in the Indian Ocean.
Properties of Protein Hydrolysates and Bioinformatics Prediction of Peptides Derived from Thermal and Enzymatic Process of Skipjack Tuna /I Roe
Currently, the use of skipjack tuna (Katsuwonus pelamis) roe to produce hydrolysate is limited, although it is a potentially valuable resource. This study aimed to investigate the physical and chemical characteristics of protein hydrolysates from tuna roe using autoclave and enzymes (alcalase and trypsin at 0.5 and 1.0% w/v). Bioinformatics was also applied to analyze the identified peptides. The hydrolysates were determined for amino acid composition, peptide profile patterns, antioxidant activity, solubility and foaming properties. The proteins were separated by SDS-PAGE before tryptic digestion and peptide identification by nano LC-ESI-MS/MS. The putative bioactivities of the identified peptides were predicted using bioinformatics prediction tools. The main amino acids found in all hydrolysates were cysteine, glycine and arginine (16.26–20.65, 10.67–13.61 and 10.87–12.08 g/100 g protein, respectively). The hydrolysates obtained from autoclaving showed lower molecular weights than those by the enzymatic method. The 0.1 g/mL concentration of hydrolysates provided higher antioxidant activities compared to the others. All hydrolysates had high solubility and exhibited foaming capacity and foam stability. Putative anti-hypertensive, anti-virus and anti-parasite activities were highly abundant within the obtained peptides. Moreover, predicted muti-bioactivity was indicated for seven novel peptides. In the future work, these peptides should be experimentally validated for further applications.
Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs
Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.
Identification of skipjack tuna
Skipjack tuna (SJT) pelagic hotspots in the western North Pacific (WNP) were modelled using fishery and satellite remotely sensed data with Ecological Niche Factor Analysis (ENFA) models. Our objectives were to model and predict habitat hotspots for SJT and assess the monthly changes in sub-surface temperatures and mixed layer depths at fishing locations. SJT presence-only monthly resolved data, sea surface temperature, chlorophyll-a, diffuse attenuation coefficient, sea surface heights and surface wind speed were used to construct ENFA models and generate habitat suitability indices using a short-term dataset from March-November 2004. The suitability indices were then predicted for July-October (2007 and 2008). Monthly aggregated polygons of areas fished by skipjack tuna pole and line vessels were also overlaid on the predicted habitat suitability maps. Distributions of sub-surface temperatures and mixed layer depths (MLD) at fishing locations were also examined. Our results showed good fit for ENFA models, as indicated by the absolute validation index, the contrast validation index and the continuous Boyce index. The predicted hotspots showed varying concurrences when compared with 25-degree polygons derived from fished areas. Northward shifts in SJT hotspots corresponded with declining MLDs from March to September. The MLDs were shallower in summer and deeper in autumn and winter months. The habitat hotspots modeled using ENFA were consistent with the known ecology and seasonal migration pattern of SJT. The findings of this work, derived from a short-term dataset, enable identification of SJT hotspots in the WNP, thus contributing valuable information for future research on SJT habitat prediction models.
Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in vitro Gastrointestinal Digestion
In China, a large amount of fish bones are produced during the processing of tuna cans production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was extracted from skipjack tuna (Katsuwonus pelamis) bone using water at 60 °C for 8 h. Amino acid analysis showed that STB-G contained Gly (340.3 residues/1000 residues) as the major amino acid and its imino acid content was 177.3 residues/1000 residues. Amino acid composition, SDS-PAGE, and Fourier transform infrared (FTIR) spectrum investigations confirmed that the physicochemical properties of STB-G were similar to those of type I collagen from skipjack tuna bone (STB-C), but partial high molecular weight components of STB-G were degraded during the extraction process, which induced that the gelatin was easier to be hydrolyzed by protease than mammalian gelatins and was suitable for preparation of hydrolysate. Therefore, STB-G was hydrolyzed under in vitro gastrointestinal digestion (pepsin-trypsin system) and five antioxidant peptides were purified from the resulted hydrolysate (STB-GH) and identified as GPDGR, GADIVA, GAPGPQMV, AGPK, and GAEGFIF, respectively. Among the gelatin hydrolysate, fractions, and isolated peptides, GADIVA and GAEGFIF exhibited the strongest scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 0.57 and 0.30 mg/mL), hydroxyl radical (EC50 0.25 and 0.32 mg/mL), superoxide anion radical (EC50 0.52 and 0.48 mg/mL), and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical (EC50 0.41 and 0.21 mg/mL). Moreover, GADIVA and GAEGFIF showed a high inhibiting ability on lipid peroxidation in a linoleic acid model system. The strong activities of five isolated peptides profited by their small molecular sizes and the antioxidant amino acid residues in their sequences. These results suggested that five isolated peptides (STP1–STP5), especially GADIVA and GAEGFIF, might serve as potential antioxidants applied in health food industries.
Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation
For full use of fish by-products, scale gelatin (TG) and antioxidant peptides (APs) of skipjack tuna (Katsuwonus pelamis) were prepared, and their properties were characterized using an amino acid analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometers (ESI-MS), and radical scavenging assays. The results indicate that TG with a yield of 3.46 ± 0.27% contained Gly (327.9 ± 5.2 residues/1000 residues) as the major amino acid and its imino acid content was 196.1 residues/1000 residues. The structure of TG was more unstable than that of type I collagen from scales of skipjack tuna (TC) and TG was more suitable for preparation of hydrolysate by protease than mammalian gelatins. Therefore, TG was separately hydrolyzed under five proteases (pepsin, papain, trypsin, neutrase, and alcalase) and ten APs (TGP1–TGP10) were isolated from the alcalase-hydrolysate. Among them, TGP5, TGP7, and TGP9 with high antioxidant activity were identified as His-Gly-Pro-Hyp-Gly-Glu (TGP5), Asp-Gly-Pro-Lys-Gly-His (TGP7) and Met-Leu-Gly-Pro-Phe-Gly-Pro-Ser (TGP9), respectively. Furthermore, TGP5, TGP7, and TGP9 exhibited a high radical scavenging capability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 values of 1.34, 0.54, and 0.67 mg/mL, respectively), hydroxyl radical (EC50 values of 1.03, 0.41, and 0.74 mg/mL, respectively), and superoxide anion radical (EC50 values of 1.19, 0.71, and 1.59 mg/mL, respectively). These results suggest that three APs (TGP5, TGP7, and TGP9), especially TGP7, have a strong antioxidant activity and could act as potential antioxidant ingredients applied in functional products.
Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle
To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 μM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.